## ILLINOIS

## STAT107 Data Science Discovery <br> Lab: Similarity

Man Fung (Heman) Leung

Fall, 2021
University of Illinois at Urbana-Champaign

- Please work in a group of 2-4 students
- collaboration is important in data science!
- meet new friends and discuss :)
- let us know if you have any questions


## Random fact of the day

Under standard (physics) assumptions, James Bond would have die in the plane jump scene in Goldeneye.

## Practical experience of the day

Since Python is an interpreted language, it is naturally slower than compiled language. In practice, we can embed compiled language such as $C / C++$ in Python to enhance the speed.

## Comment: Birthday

- Common/potential mistakes
- did not follow instruction in 0.2
- calculated wrong/did not calculate exact probability in Part $1 / 2$
- for 3.2 , checking " $==$ " is wrong (in test case)
- forgot to do $4.4 /$ did not guess in 4.5
- for 4.5 , checking " $<=$ " or " $>=$ " are both fine
- for probabilities, some of you coded the number of success row directly
- Running the test cases successfully do not imply full score
- example: 2.1a
- some puzzles' output cannot be tested
- but failing a test case usually imply point lost
- Main page
- Retrieve the lab using git
- Complete the notebook
- hints are available by double clicking the question cells
- 2.2: change exclude to include in select_dtypes
- 2.5: code is given but remember to do reflection below
- 2.6: try
df [numcols].fillna(df[numcols].mean(axis=0)) for numeric columns
- 4.2: use for-loop to iterate over all columns. Inside the loop, check if the current column is numeric or string. Then compute the score based on the notebook's description
- Submit your work. Feel free to:
- ask us questions
- leave whenever you finish the lab


## Checking completion

Default total number of cells: 55

- 1.1 in cell 6
- 1.2 in cell 9
- 1.3 in cell 12 (reflection)
- 2.1 in cell 17
- 2.2 in cell 20
- 2.3 in cell 23
- 2.4 in cell $25-26$
- 2.5 in cell 28,30
(reflection)
- 2.6 in cell $32-33$
(reflection)
- 3.1 in cell 35
- 3.2 in cell 38
- 4.1 in cell 42 (textual)
- 4.2 in cell 44
- 4.3 in cell 46
- 5.1 in cell 48
- 5.2 in cell 50
- 5.3 in cell 53

