

STAT1012 POST-MIDTERM REVIEW

LEUNG MAN FUNG, HEMAN SPRING, 2020

TOPIC SO FAR...

Central tendency • Mean, mode, median • Quartile, percentile Dispersion • Variance, SD • Range, IQR, skewness Graphical methods • Bar graph, histogram • Stem-and-leaf, boxplot	Notation • Union, intersect, complement • DeMorgan's laws Probability theory • Mutually exclusive • Independence • Conditional probability, relative risk • Total probability rule, exhaustive • Bayes' theorem	Discrete random variables • Pmf, cdf • Total probability rule • Expectation, variance Binomial distribution Poisson distribution • poisson approximation to binomial	Continuous random variables • Pdf, cdf • Total probability rule • Expectation, variance Uniform distribution Normal distribution • Standardization • Normal probability table • Normal approximation to binomial • Normal approximation to poisson
Ch1 Descriptive Statistics	Ch2 Probability	Ch3 Discrete Probability Distributions	Ch4 Continuous Probability Distributions

WHAT IS IMPORTANT...

Central tendency • Mean, mode, median • Quartile, percentile Dispersion • Variance, SD • Range, IQR, skewness Graphical methods • Bar graph, histogram • Stem-and-leaf, boxplot	Notation • Union, intersect, complement • DeMorgan's laws Probability theory • Mutually exclusive • Independence • Conditional probability, relative risk • Total probability rule, exhaustive • Bayes' theorem	Discrete random variables • Pmf, cdf • Total probability rule • Expectation, variance Binomial distribution • when to apply Poisson distribution • when to apply • poisson approximation to binomial	Continuous random variables • Pdf, cdf • Total probability rule • Expectation, variance Uniform distribution Normal distribution • Standardization • Normal probability table • Normal approximation to binomial • Normal approximation to poisson
Ch1 Descriptive Statistics	Ch2 Probability	Ch3 Discrete Probability Distributions	Ch4 Continuous Probability Distributions

Sample and population

Independence

Bayes' theorem

Discrete random variables

Continuous random variables

Normal distribution

When to apply X distribution?

Q&A

AGENDA

SAMPLE AND POPULATION

- Population: the whole set of entities of interest
 - Example 1: all Hong Kong citizen (Census)
 - Example 2: STAT1012 student in 2020 Spring
 - Example 3: current student taken STAT1012
- Mean: $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$ (*N* is the population size)
- Variance: $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2$

- Sample: a subset of the population
 - Example 1: 1000 randomly selected HK citizen
 - Example 2: STAT1012 year 1 student in 2020 Spring
 - Example 3: current student taken STAT1012 in 2019 Fall
- Mean: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ (*n* much smaller than *N* usually)
- Variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$
 - $\frac{1}{n-1}$ is the bias correction (to be taught in Ch5)

INDEPENDENCE

- We use event (A, B and C) for illustration
 - The idea of independence can be extended to other concepts like random variable etc.
- Pairwise independence
 - $P(A \cap B) = P(A) \times P(B) \Leftrightarrow A, B$ are pairwise independent
 - Same for the pair *A*, *C* and the pair *B*, *C*
- Mutual independence
 - $P(A \cap B \cap C) = P(A) \times P(B) \times P(C) \Leftrightarrow A, B, C$ are mutually independent
 - Extend independence to more than 2 events
 - Mutual independence implies pairwise but not vice versa
- Independence is used as an assumption in sampling only later

BAYES' THEOREM

•
$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_{j=1}^k P(B|A_j)P(A_j)}$$

- Why important?
 - Allow you to model the data with your belief (professional judgement) *B*
 - Basis of Bayesian inference (will not be covered in this course)
 - See quick revision notes section VII remarks
- Will not appear in later chapters but you should know this term
 - Example: people used Bayesian method to search MH730

DISCRETE RANDOM VARIABLES

- Random variables: numeric quantities that take different values with specified probabilities
 - Discrete random variable: a R.V. that takes value from a discrete set of numbers
 - Hence the values and probabilities of a discrete r.v. can be tabulated
- Probability mass function: a pmf assigns a probability to each possible value x of the discrete random variable X
 - Denoted by f(x) = P(X = x)
 - Attempt to relate values and probabilities of the table via a function
- Expected value: $\mu = E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$
 - The idea is "probability weighted average"
 - Population notation μ is used as you know everything about the r.v. X from the table/pmf
- Variance: $\sigma^2 = Var(X) = \sum_{i=1}^n (x_i \mu)^2 P(X = x_i)$
 - The idea is "probability weighted distance from mean"
 - Alternatively $Var(X) = E(X^2) [E(X)]^2$

CONTINUOUS RANDOM VARIABLES

- Probability density function: a pdf specifies the probability of a r.v. falling within a particular range of values
 - denoted by f(x)
 - Attempt to relate probability via the area under pdf as pointwise probability is 0
 - $P(a \le X \le b)$ = the area under the pdf curve from a to b
 - P(X = a) = 0 for all *a* (in contrast this is what discrete r.v. use)
- Why do we teach the above even when calculus is not required?
 - For applying normal distribution
 - Visual "area under the pdf curve" when you check the normal probability table
 - Distinguish continuous r.v. from discrete as the later use pointwise definition
 - To give you basic concept if you want to further study statistics

NORMAL DISTRIBUTION

• Standard normal distribution: $Z \sim N(0,1)$

• Standardization: if
$$X \sim N(\mu, \sigma^2)$$
, then $\frac{X-\mu}{\sigma} \sim N(0,1)$

- Normal probability table
 - Check probability when the lower and upper bounds are known

•
$$P(a < X < b) = P\left(\frac{a-\mu}{\sigma} < Z < \frac{b-\mu}{\sigma}\right) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

- Check the critical value when the probability is known (used in later chapters)
- Normal approximation: example of the central limit theorem (to be taught in Ch5)

WHEN TO APPLY X DISTRIBUTION?

- Binomial distribution
 - Number of success in a fixed number of independence trials (binary proportion)
 - Example: number of student answering yes in question 1 in a test (fixed total number of attendees)
- Poisson distribution
 - Number of occurrence over a fixed time/space (rate)
 - Example: number of customer getting into a supermarket in an hour (fixed time as an hour and space as supermarket)
- Uniform distribution
 - Fair outcome
 - Example: fair coin toss, fair dice thrown
- Normal distribution
 - Statistical inference due to central limit theorem (to be taught in Ch5)

ALL MODELS ARE WRONG, BUT SOME ARE USEFUL