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Basic 

Knowledge



Geometric Distribution

 𝑋 ∼ Geo(𝑝)

 number of Bernoulli trials 𝑋 needed to get 1 success

 each trial has a probability of success 𝑝

 Pmf: ℙ 𝑋 = 𝑥 = 1 − 𝑝 𝑥−1𝑝 for 𝑥 = 1, 2, …

 Mean: 𝔼 𝑋 =
1

𝑝

 Variance: Var 𝑋 =
1−𝑝

𝑝2

 Related to rejection sampling



Exponential Distribution

 𝑋 ∼ Exp(𝜆)

 Continuous analogue of the geometric distribution

 We adopt the rate parametrization instead of scale 

 Pdf: 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥 for 𝑥 ≥ 0, otherwise 0

 Cdf: 𝐹 𝑥 = 1 − 𝑒−𝜆𝑥 for 𝑥 ≥ 0

 Mean: 𝔼 𝑋 =
1

𝜆

 Variance: Var 𝑋 =
1

𝜆2

 Memoryless property: ℙ 𝑋 > 𝑠 + 𝑡 𝑋 > 𝑠 = ℙ(𝑋 > 𝑡) for 𝑠, 𝑡 ≥ 0

 Exponential distribution is the only continuous distribution that has this property

 Useful representation: if 𝑌 ∼ Exp(1), then
𝑌

𝜆
∼ Exp(𝜆)



Some Properties of Expectation, 

Variance and Covariance

 Law of the unconscious statistician: 𝔼 𝑔 𝑋 = σ𝑖=1
𝑛 𝑔 𝑥𝑖 ℙ(𝑋 = 𝑥𝑖)

 Also holds for continuous random variables

 Translation/rescale: 

 𝔼 𝑎𝑋 + 𝑏 = 𝑎𝔼 𝑋 + 𝑏

 Var 𝑎𝑋 + 𝑏 = 𝑎2Var(𝑋)

 Cov 𝑎𝑋 + 𝑏, 𝑐𝑌 + 𝑑 = 𝑎𝑐Cov(𝑋, 𝑌), Cov 𝑋, 𝑋 = Var(𝑋)

 Linearity of expectation: 𝔼 σ𝑖=1
𝑛 𝑋𝑖 = σ𝑖=1

𝑛 𝔼(𝑋𝑖)

 Alternative formula for variance: Var(𝑋) = 𝔼 𝑋2 − 𝔼 𝑋 2

 Example: HW1 5, HW2 1



Geometric Brownian Motion

 SDE: dSt = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 ⇒ St = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑡+𝜎𝑊𝑡

 Use 𝑆𝑇 = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑇+𝜎 𝑇𝑍

in simulation to avoid simulating intermediate prices

 Algorithm:

 Generate 𝑍 ∼ 𝑁(0,1)

 Set 𝑆𝑇 = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑇+𝜎 𝑇𝑍

 Example: HW1 1, 2; HW2 5

 Question may specify stock price dynamic other than GBM

 Use the given dynamic to simulate 𝑆𝑇 like generating random variables



The Black-

Scholes 

World



Risk Neutral Valuation 

 𝑉𝑡 = 𝑒−𝑟 𝑇−𝑡 𝔼 𝑓 𝑆𝑡 , 𝑡

 Take expectation w.r.t. real world probability?

 E.g., with insider info you know price of a certain stock will likely go up

 Problem of the discount rate

 If real world probability is used, discount rate has to accommodate the level of 

risk (think about the discount rate you use in DCF)

 If risk neutral probability is used, discount rate = risk free rate (observable)

 Just give you another way of looking at risk neutral approach

 The above formula always hold. Why do we need model like GBM then?

 Because 𝑟, 𝑡, 𝑇, 𝑓(⋅,⋅) are known/observable but 𝑆𝑡 is not



Black–Scholes–Merton Model

 Black-Scholes formula

 𝐶 𝑆𝑡 , 𝑡 = Φ 𝑑1 𝑆𝑡 − Φ 𝑑2 𝐾𝑒−𝑟 𝑇−𝑡 ,

 𝑃 𝑆𝑡 , 𝑡 = 𝐾𝑒−𝑟 𝑇−𝑡 − St + 𝐶 𝑆𝑡 , 𝑡 = Φ −𝑑2 𝐾𝑒−𝑟 𝑇−𝑡 − Φ −𝑑1 𝑆𝑡

 𝑑1 =
1

𝜎 𝑇−𝑡
ln

𝑆𝑡

𝐾
+ 𝑟 +

𝜎2

2
𝑇 − 𝑡

 𝑑2 = 𝑑1 − 𝜎 𝑇 − 𝑡

 Note that 𝑃 𝑆𝑡 , 𝑡 is derived from put-call parity

 Put-call parity: 𝐶𝐸 − 𝑃𝐸 = 𝑆 − 𝐾𝑒−𝑟 𝑇−𝑡

 Implied volatility

 Value of volatility when back-solving an option pricing model (such as BS) with 
current market price 



Monte Carlo 

Method



Key Idea

 Use repeated random 

sampling to obtain 

numerical estimate

 The estimate is usually 

average in our course

 Example: estimate 𝜋
(picture credit: nicoguaro)

https://en.wikipedia.org/wiki/Monte_Carlo_method#/media/File:Pi_30K.gif


Standard Monte Carlo

 HW2 5a: price a European call option

 Recall payoff function is max(𝑆𝑇 − 𝐾, 0)

 Estimate 𝔼[max 𝑆𝑇 − 𝐾, 0 ] by sample average 
1

𝑛
σ𝑖=1
𝑛 max(𝑆𝑇

(𝑖)
− 𝐾, 0)

 Algorithm

 1) Generate 𝑍 ∼ 𝑁(0,1)

 2) Set 𝑆𝑇 = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑇+𝜎 𝑇𝑍

 3) Compute 𝝅𝒊 = 𝐦𝐚𝐱(𝑺𝑻 − 𝑲, 𝟎)

 4) Repeat 1 to 3 for 𝑖 = 1, … , 𝑛

 5) Option price = 
e−rT

n
σ𝑖=1
𝑛 𝜋𝑖



Stopping a Simulation

 Margin of error: terminate a simulation when 
𝑠2

𝑛
≤ 𝑑

 Where 𝑠2 is the sample variance and 𝑑 is the maximum tolerable error

 This is essentially based on the Central Limit Theorem

 Law of large numbers (WLLN): Let 𝑋1, … , 𝑋𝑛 be i.i.d. random variables with

mean 𝜃 and variance 𝜎2, then ത𝑋𝑛 ≈ 𝜃 as 𝑛 → ∞

 Central limit theorem: Let 𝑋1, … , 𝑋𝑛 be i.i.d. random variables with mean 𝜃

and finite variance 𝜎2, then ത𝑋𝑛 ≈ N 𝜃,
𝜎2

𝑛
as 𝑛 → ∞



Random 

Variable 

Generation



Key ideas

 Monte Carlo methods rely on repeated random sampling

 Need way(s) to generate different random variables

 Only Unif(0,1) and N(0,1) can be generated without any algorithm

 Technically only Unif(0,1) (pseudorandom number)

 N(0,1) is generated by special algorithm as well, e.g., Box–Muller transformation

 They are omitted in this course

 Modulo operation: find the remainder of a division; denoted by mod.

 E.g., 97 = 7 (mod 10), 25 = 1 (mod 8)

 Use inverse transform/rejection sampling if other distribution appears



Inverse Transform

 Probability integral transform: if 𝑋 is a continuous random variable with cdf
𝐹𝑋, then 𝑌 = 𝐹𝑋 𝑋 ∼ Unif(0,1)

 Therefore, if we know 𝑋 ∼ 𝐹𝑋 (i.e., the cdf), we can generate 𝑋 out of 

𝑈~Unif(0,1)

 Need to derive cdf if only pdf is given

 Algorithm (discrete)

 Generate 𝑈 ∼ Unif(0,1)

 𝑋 = 𝑥𝑗 if σ𝑖=0
𝑗−1

𝑝𝑖 ≤ 𝑈 < σ𝑖=0
𝑗

𝑝𝑖

 Algorithm (continuous)

 Generate 𝑈 ∼ Unif(0,1)

 𝑋 = 𝐹𝑋
−1(𝑈) assuming the inverse exists

 Example: HW2 1c, 4a



Rejection Sampling

 If we can simulate 𝑌 ∼ 𝐺𝑌 easily, we can use the proportional distribution as 

a basis to simulate 𝑋 with pdf 𝑓(𝑥)

 Algorithm

 1) Find 𝑐 = max
𝑦

𝑓 𝑦

𝑔 𝑦

 2) Generate 𝑌𝑖 from a density g: 𝑈1 ∼ Unif(0,1) ⇒ 𝑌𝑖 = 𝐺−1(𝑈1)

 3) Generate 𝑈2 ∼ Unif(0,1)

 4) If U2 ≤
1

𝑐
⋅
𝑓 𝑌𝑖

𝑔 𝑌𝑖
, set 𝑋𝑖 = 𝑌𝑖, otherwise return to 2

 Example: HW2 3, 4b

 Inverse transform is rejection sampling with 𝑐 = 1

 Because inverse transform simulate from 𝐹 directly (always accept)



Variance 

Reduction 

Technique



Antithetic Variables

 If we are able to generate negatively correlated underlying random 

variables, the estimator can have lower variance as compared with 

independent samples

 This requires the target function ℎ(𝑥) to be monotone

 Show ℎ′ 𝑥 ≥ 0 or ℎ′ 𝑥 ≤ 0 within the target range for monotonicity

 As ℎ(𝑥) is monotone, Cov ℎ 𝑈 , ℎ 1 − 𝑈 ≤ 0 where 𝑈 ∼ Unif(0,1)

 As half of your variables are antithetic, you only need to generate 
𝑛

2
numbers for 

𝑛 samples



Antithetic Variables

 Algorithm:

 1) Generate 𝑈 ∼ Unif(0,1)

 2) Set 𝑋𝑖 = 𝐹−1 𝑈 , 𝑌𝑖 = 𝐹−1(1 − 𝑈) (note: want X, Y same distribution but negative 

correlation)

 3) Repeat 1 and 2 for n times

 4) 𝜃 =
1

2𝑛
σ𝑖=1
𝑛 ℎ 𝑋𝑖 + ℎ 𝑌𝑖

 Note:

 𝐹−1 𝑈 is monotone in general as cdf is monotone

 Hence ℎ 𝐹−1 𝑈 is monotone if ℎ(⋅) is monotone



Q&A


