RMSC5102 Midterm Review

Leung Man Fung, Heman Spring, 2021

- Review
 - Basic Knowledge
 - The Black-Scholes World
 - Monte Carlo Method
 - Random Variable Generation
 - Variance Reduction Technique

Q&A

Basic Knowledge

Geometric Distribution

- $X \sim \text{Geo}(p)$
 - number of Bernoulli trials X needed to get 1 success
 - each trial has a probability of success p
- Pmf: $\mathbb{P}(X = x) = (1 p)^{x-1}p$ for x = 1, 2, ...
- Mean: $\mathbb{E}(X) = \frac{1}{p}$
- Variance: $Var(X) = \frac{1-p}{p^2}$
- Related to rejection sampling

Exponential Distribution

- $X \sim \operatorname{Exp}(\lambda)$
 - Continuous analogue of the geometric distribution
 - We adopt the rate parametrization instead of scale
- Pdf: $f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$, otherwise 0
- Cdf: $F(x) = 1 e^{-\lambda x}$ for $x \ge 0$
- Mean: $\mathbb{E}(X) = \frac{1}{\lambda}$
- Variance: $Var(X) = \frac{1}{\lambda^2}$
- Memoryless property: $\mathbb{P}(X > s + t | X > s) = \mathbb{P}(X > t)$ for $s, t \ge 0$
 - Exponential distribution is the only continuous distribution that has this property

• Useful representation: if
$$Y \sim \text{Exp}(1)$$
, then $\frac{Y}{\lambda} \sim \text{Exp}(\lambda)$

Some Properties of Expectation, Variance and Covariance

- Law of the unconscious statistician: $\mathbb{E}[g(X)] = \sum_{i=1}^{n} g(x_i) \mathbb{P}(X = x_i)$
 - Also holds for continuous random variables
- Translation/rescale:
 - $\blacksquare \mathbb{E}(aX+b) = a\mathbb{E}(X) + b$
 - $Var(aX + b) = a^2 Var(X)$
 - Cov(aX + b, cY + d) = acCov(X, Y), Cov(X, X) = Var(X)
- Linearity of expectation: $\mathbb{E}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \mathbb{E}(X_i)$
- Alternative formula for variance: $Var(X) = \mathbb{E}(X^2) [\mathbb{E}(X)]^2$
- Example: HW1 5, HW2 1

Geometric Brownian Motion

• SDE:
$$dS_t = rS_t dt + \sigma S_t dW_t \Rightarrow S_t = S_0 e^{\left(r - \frac{1}{2}\sigma^2\right)t + \sigma W_t}$$

• Use $S_T = S_0 e^{\left(r - \frac{1}{2}\sigma^2\right)T + \sigma\sqrt{T}Z}$ in simulation to avoid simulating intermediate prices

Algorithm:

- Generate $Z \sim N(0,1)$
- Set $S_T = S_0 e^{\left(r \frac{1}{2}\sigma^2\right)T + \sigma\sqrt{T}Z}$
- Example: HW1 1, 2; HW2 5
- Question may specify stock price dynamic other than GBM
 - Use the given dynamic to simulate S_T like generating random variables

The Black-Scholes World

Risk Neutral Valuation

- $V_t = e^{-r(T-t)} \mathbb{E}[f(S_t, t)]$
- Take expectation w.r.t. real world probability?
 - E.g., with insider info you know price of a certain stock will likely go up
- Problem of the discount rate
 - If real world probability is used, discount rate has to accommodate the level of risk (think about the discount rate you use in DCF)
 - If risk neutral probability is used, discount rate = risk free rate (observable)
 - Just give you another way of looking at risk neutral approach
- The above formula always hold. Why do we need model like GBM then?
 - Because $r, t, T, f(\cdot, \cdot)$ are known/observable but S_t is not

Black-Scholes-Merton Model

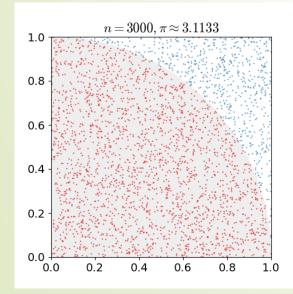
Black-Scholes formula

- $C(S_t, t) = \Phi(d_1)S_t \Phi(d_2)Ke^{-r(T-t)}$,
- $P(S_t, t) = Ke^{-r(T-t)} S_t + C(S_t, t) = \Phi(-d_2)Ke^{-r(T-t)} \Phi(-d_1)S_t$
- $d_1 = \frac{1}{\sigma\sqrt{T-t}} \left[\ln\left(\frac{S_t}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)(T-t) \right]$
- $\bullet \quad d_2 = d_1 \sigma \sqrt{T t}$
- Note that $P(S_t, t)$ is derived from put-call parity
 - Put-call parity: $C_E P_E = S Ke^{-r(T-t)}$
- Implied volatility
 - Value of volatility when back-solving an option pricing model (such as BS) with current market price

Monte Carlo Method

Key Idea

- Use repeated random sampling to obtain numerical estimate
 - The estimate is usually average in our course
- Example: estimate π (picture credit: <u>nicoguaro</u>)



Standard Monte Carlo

HW2 5a: price a European call option

- Recall payoff function is $max(S_T K, 0)$
- Estimate $\mathbb{E}[\max(S_T K, 0)]$ by sample average $\frac{1}{n}\sum_{i=1}^n \max(S_T^{(i)} K, 0)$

Algorithm

• 1) Generate $Z \sim N(0,1)$

• 2) Set
$$S_T = S_0 e^{\left(r - \frac{1}{2}\sigma^2\right)T + \sigma\sqrt{T}Z}$$

- **3)** Compute $\pi_i = \max(S_T K, 0)$
- 4) Repeat 1 to 3 for i = 1, ..., n

• 5) Option price =
$$\frac{e^{-rT}}{n} \sum_{i=1}^{n} \pi_i$$

Stopping a Simulation

• Margin of error: terminate a simulation when $\frac{s^2}{\sqrt{n}} \le d$

- Where s^2 is the sample variance and d is the maximum tolerable error
- This is essentially based on the Central Limit Theorem
- Law of large numbers (WLLN): Let $X_1, ..., X_n$ be i.i.d. random variables with mean θ and variance σ^2 , then $\overline{X}_n \approx \theta$ as $n \to \infty$
- Central limit theorem: Let $X_1, ..., X_n$ be i.i.d. random variables with mean θ and finite variance σ^2 , then $\bar{X}_n \approx N\left(\theta, \frac{\sigma^2}{n}\right)$ as $n \to \infty$

Random Variable Generation

Key ideas

- Monte Carlo methods rely on repeated random sampling
 - Need way(s) to generate different random variables
- Only Unif(0,1) and N(0,1) can be generated without any algorithm
 - Technically only Unif(0,1) (pseudorandom number)
 - N(0,1) is generated by special algorithm as well, e.g., Box–Muller transformation
 - They are omitted in this course
- Modulo operation: find the remainder of a division; denoted by mod.
 - E.g., 97 = 7 (mod 10), 25 = 1 (mod 8)
- Use inverse transform/rejection sampling if other distribution appears

Inverse Transform

- Probability integral transform: if X is a continuous random variable with cdf F_X , then $Y = F_X(X) \sim \text{Unif}(0,1)$
- Therefore, if we know $X \sim F_X$ (i.e., the cdf), we can generate X out of $U \sim \text{Unif}(0,1)$
 - Need to derive cdf if only pdf is given
- Algorithm (discrete)
 - Generate $U \sim \text{Unif}(0,1)$
 - $X = x_j$ if $\sum_{i=0}^{j-1} p_i \le U < \sum_{i=0}^{j} p_i$
- Algorithm (continuous)
 - Generate $U \sim \text{Unif}(0,1)$
 - $X = F_X^{-1}(U)$ assuming the inverse exists
- Example: HW2 1c, 4a

Rejection Sampling

- If we can simulate $Y \sim G_Y$ easily, we can use the proportional distribution as a basis to simulate X with pdf f(x)
- Algorithm
 - 1) Find $c = \max_{y} \frac{f(y)}{g(y)}$
 - 2) Generate Y_i from a density g: $U_1 \sim \text{Unif}(0,1) \Rightarrow Y_i = G^{-1}(U_1)$
 - 3) Generate $U_2 \sim \text{Unif}(0,1)$
 - 4) If $U_2 \leq \frac{1}{c} \cdot \frac{f(Y_i)}{g(Y_i)}$, set $X_i = Y_i$, otherwise return to 2
- Example: HW2 3, 4b
- Inverse transform is rejection sampling with c = 1
 - Because inverse transform simulate from F directly (always accept)

Variance Reduction Technique

Antithetic Variables

- If we are able to generate negatively correlated underlying random variables, the estimator can have lower variance as compared with independent samples
 - This requires the target function h(x) to be monotone
 - Show $h'(x) \ge 0$ or $h'(x) \le 0$ within the target range for monotonicity
 - As h(x) is monotone, $Cov[h(U), h(1 U)] \le 0$ where $U \sim Unif(0,1)$
 - As half of your variables are antithetic, you only need to generate $\frac{n}{2}$ numbers for *n* samples

Antithetic Variables

Algorithm:

- 1) Generate $U \sim \text{Unif}(0,1)$
- 2) Set $X_i = F^{-1}(U)$, $Y_i = F^{-1}(1 U)$ (note: want X, Y same distribution but negative correlation)
- 3) Repeat 1 and 2 for n times
- 4) $\hat{\theta} = \frac{1}{2n} \sum_{i=1}^{n} [h(X_i) + h(Y_i)]$
- Note:
 - $F^{-1}(U)$ is monotone in general as cdf is monotone
 - Hence $h[F^{-1}(U)]$ is monotone if $h(\cdot)$ is monotone

IF YOURE GOING THROUGH HELL KEEP GOING

-Winston Churchill

Q&A