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Basic
Knowledge




Geometric Distribution

» X ~ Geo(p)
» number of Bernoulli trials X needed to get 1 success
» cqch trial has a probability of success p

» Pmf:P(X=x)=1-p)* Ipforx=1,2,..

» Mean: E(X) =%

» Variance: Var(X) = 1p_—p
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» Relafed o rejection sampling



Exponential Distribution

» X ~Exp(1)
» Continuous analogue of the geometric distribution

» We adopt the rate parametrization instead of scale
» Pdf: f(x) = e ** for x > 0, otherwise 0

» Cdf: F(x)=1—e ™ forx >0

» Mean: E(X) =%
» Variance: Var(X) = /1—12
» Memoryless property: P(X >s+t|X >s)=PX >t)fors,t =0

» Exponential distribution is the only continuous distribution that has this property

» Useful representation: if Y ~ Exp(1), then% ~ Exp(4)




Some Properties of Expectation,
Variance and Covariance

» | aw of the unconscious statistician: E[g(X)] = Y- gx)P(X = x;)
» Also holds for continuous random variables
» Translation/rescale:
®» E(aX+b)=aEX)+b
» Var(aX + b) = a*Var(X)
®» Cov(aX + b,cY +d) = acCov(X,Y), Cov(X,X) = Var(X)
» |inearity of expectation: EQ L, X;) = Y-, E(X;)

» Alternative formula for variance: Var(X) = E(X?) — [E(X)]?

» Example: HW1 5, HW2 1



Geometric Brownian Motion

1
» SDE dSt — 'rStdt - O—Stth - St — Soe(‘r—ao'z)t+O'Wt

= UseS; = Soe(r—%az)T+a\/TZ

in simulation to avoid simulating intfermediate prices
» Algorithm:
» Generate Z ~ N(0,1)

(r—%az)T+a\/TZ

» SeT ST = Soe
» Example: HW1 1, 2; HW2 5

» Question may specify stock price dynamic other than GBM

» Use the given dynamic to simulate S; like generating random variables




The Black-
Scholes
World




Risk Neutral Valuation

= V, = e "TOE[f(S, )]
» Take expectation w.r.t. real world probability?
» [ g., with insider info you know price of a certain stock will likely go up

» Problem of the discount rate

» |f real world probability is used, discount rate has to accommodate the level of
risk (think about the discount rate you use in DCF)

» |f risk neutral probability is used, discount rate = risk free rate (observable)
» Just give you another way of looking aft risk neutral approach
» The above formula always hold. Why do we need model like GBM then?

» Becauser,t, T, f(:,-) are known/observable but S; is not




Black-Scholes—Merton Model

» Black-Scholes formula
®» C(S;,t) = ®(dy)S, — P(dy)Ke ™T0,
» P(S,t) =Ke 7T D S, +C(S,,t) = D(—dy)Ke 7T — d(—d,)S,

= == n(F) + (r+ ) -0

» dz =d1_UVT_t
» Note that P(S,, t) is derived from put-call parity

» Put-call parity: Cz — Py =S — Ke (T8
» |mplied volatility

» Value of volatility when back-solving an option pricing model (such as BS) with
current market price




onte Carlo
Method




Key ldea

Use repeated random
sampling to obtain
numerical estimate

The estimate is usually
average in our course

Example: estimate «
(picture credit: nicoguaro)



https://en.wikipedia.org/wiki/Monte_Carlo_method#/media/File:Pi_30K.gif

Standard Monte Carlo

» HW2 5a: price a European call option

» Recall payoff function is max(S; — K, 0)
» [Estimate E[max(Sy — K, 0)] by sample average %Z{;l maX(S;i) — K,0)

» Algorithm
» ) Generate Z ~ N(0,1)

» 2) SeT ST = Soe(r—%Uz)T+O'\/TZ
» 3) Compute r; = max(Sy — K, 0)
» 4) Repeat 1to3fori=1,..,n

Z?:l T[l

-rT

» 5) Option price =

e
n




Stopping a Simulation

2
= Margin of error: terminate a simulation when j—ﬁ <d

» Where s? is the sample variance and d is the maximum tolerable error

» This is essentially based on the Central Limit Theorem

» | aw of large numbers (WLLN): Let X, ..., X,, be ii.d. random variables with
mean 6 and variance ¢4, then X,, * 8 asn - «

» Cenftral limit theorem: Let X, ..., X,, be i.i.d. random variables with mean 6

0.2

and finite variance ¢?, then X,, ~ N (9,7) asn —




Random
Variable
Generation




Key ideas

Monte Carlo methods rely on repeated random sampling
» Need way(s) to generate different random variables
Only Unif(0,1) and N(0,1) can be generated without any algorithm
» Technically only Unif(0,1) (pseudorandom number)
= N(0,1) is generated by special algorithm as well, e.g., Box—Muller transformation
» They are omitted in this course
Modulo operation: find the remainder of a division; denoted by mod.
» Fg., 97 =7 (mod 10), 25 = 1 (mod 8)
Use inverse tfransform/rejection sampling if other distribution appears



Inverse Transform

» Probability intfegral transform: if X is a confinuous random variable with cdf
Fy. then Y = Fy(X) ~ Unif(0,1)

» Therefore, if we know X ~ Fy (i.e., the cdf), we can generate X out of
U~Unif(0,1)

» Need to derive cdf if only pdf is given
» Algorithm (discrete)
» Generate U ~ Unif(0,1)

= X =xif %/ P <U<Zi_,pi
= Algorithm (continuous)
» Generate U ~ Unif(0,1)
» X = F;1(U) assuming the inverse exists

» Example: HW2 1c, 4a




Rejection Sampling

» |f we can simulate Y ~ Gy easily, we can use the proportional distribution as
a basis to simulate X with pdf f(x)

» Algorithm

®» ) Findc = max L%
y 9)

» 2) Generate Y; from a density g: U; ~ Unif(0,1) = Y; = ¢~ 1(U,)
» 3) Generate U, ~ Unif(0,1)

1 1)
c gy’

» Example: HW2 3, 4b

® |nverse transform is rejection sampling with ¢ = 1

» 4)IfU, < sef X; = Y;, otherwise return fo 2

®» Because inverse transform simulate from F directly (always accept)




Variance
Reduction
Technique




Antithetic Variables

» |f we are able to generate negatively correlated underlying random
variables, the estimator can have lower variance as compared with
independent samples

= This requires the target function h(x) to be monotone
» Show h'(x) = 0 or h'(x) < 0 within the target range for monotonicity
® As h(x) is monotone, Cov[h(U),h(1 — U)] < 0 where U ~ Unif(0,1)

» As half of your variables are antithetic, you only need to generate g numbers for
n samples




Antithetic Variables

» Algorithm:
» |) Generate U ~ Unif(0,1)

» 2)SetX; = F1(U),Y; = F1(1 - U) (note: want X, Y same distribution but negative
correlation)

» 3) Repeat 1 and 2 for n times

= 4) 6 = —¥ [h(X;) + h(Y))]

RS
2n
» Nofe:

» F~1(U)is monotone in general as cdf is monotone

» Hence h[F~1(U)] is monotone if h(-) is monotone




IF YOURE GOING THROUGH HEL

KEEP GOING

-Winston Churchill

Q&A




