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 Q&A



Basic 

Knowledge



Geometric Distribution

 𝑋 ∼ Geo(𝑝)

 number of Bernoulli trials 𝑋 needed to get 1 success

 each trial has a probability of success 𝑝

 Pmf: ℙ 𝑋 = 𝑥 = 1 − 𝑝 𝑥−1𝑝 for 𝑥 = 1, 2, …

 Mean: 𝔼 𝑋 =
1

𝑝

 Variance: Var 𝑋 =
1−𝑝

𝑝2

 Related to rejection sampling



Exponential Distribution

 𝑋 ∼ Exp(𝜆)

 Continuous analogue of the geometric distribution

 We adopt the rate parametrization instead of scale 

 Pdf: 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥 for 𝑥 ≥ 0, otherwise 0

 Cdf: 𝐹 𝑥 = 1 − 𝑒−𝜆𝑥 for 𝑥 ≥ 0

 Mean: 𝔼 𝑋 =
1

𝜆

 Variance: Var 𝑋 =
1

𝜆2

 Memoryless property: ℙ 𝑋 > 𝑠 + 𝑡 𝑋 > 𝑠 = ℙ(𝑋 > 𝑡) for 𝑠, 𝑡 ≥ 0

 Exponential distribution is the only continuous distribution that has this property

 Useful representation: if 𝑌 ∼ Exp(1), then
𝑌

𝜆
∼ Exp(𝜆)



Some Properties of Expectation, 

Variance and Covariance

 Law of the unconscious statistician: 𝔼 𝑔 𝑋 = σ𝑖=1
𝑛 𝑔 𝑥𝑖 ℙ(𝑋 = 𝑥𝑖)

 Also holds for continuous random variables

 Translation/rescale: 

 𝔼 𝑎𝑋 + 𝑏 = 𝑎𝔼 𝑋 + 𝑏

 Var 𝑎𝑋 + 𝑏 = 𝑎2Var(𝑋)

 Cov 𝑎𝑋 + 𝑏, 𝑐𝑌 + 𝑑 = 𝑎𝑐Cov(𝑋, 𝑌), Cov 𝑋, 𝑋 = Var(𝑋)

 Linearity of expectation: 𝔼 σ𝑖=1
𝑛 𝑋𝑖 = σ𝑖=1

𝑛 𝔼(𝑋𝑖)

 Alternative formula for variance: Var(𝑋) = 𝔼 𝑋2 − 𝔼 𝑋 2

 Example: HW1 5, HW2 1



Geometric Brownian Motion

 SDE: dSt = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 ⇒ St = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑡+𝜎𝑊𝑡

 Use 𝑆𝑇 = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑇+𝜎 𝑇𝑍

in simulation to avoid simulating intermediate prices

 Algorithm:

 Generate 𝑍 ∼ 𝑁(0,1)

 Set 𝑆𝑇 = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑇+𝜎 𝑇𝑍

 Example: HW1 1, 2; HW2 5

 Question may specify stock price dynamic other than GBM

 Use the given dynamic to simulate 𝑆𝑇 like generating random variables



The Black-

Scholes 

World



Risk Neutral Valuation 

 𝑉𝑡 = 𝑒−𝑟 𝑇−𝑡 𝔼 𝑓 𝑆𝑡 , 𝑡

 Take expectation w.r.t. real world probability?

 E.g., with insider info you know price of a certain stock will likely go up

 Problem of the discount rate

 If real world probability is used, discount rate has to accommodate the level of 

risk (think about the discount rate you use in DCF)

 If risk neutral probability is used, discount rate = risk free rate (observable)

 Just give you another way of looking at risk neutral approach

 The above formula always hold. Why do we need model like GBM then?

 Because 𝑟, 𝑡, 𝑇, 𝑓(⋅,⋅) are known/observable but 𝑆𝑡 is not



Black–Scholes–Merton Model

 Black-Scholes formula

 𝐶 𝑆𝑡 , 𝑡 = Φ 𝑑1 𝑆𝑡 − Φ 𝑑2 𝐾𝑒−𝑟 𝑇−𝑡 ,

 𝑃 𝑆𝑡 , 𝑡 = 𝐾𝑒−𝑟 𝑇−𝑡 − St + 𝐶 𝑆𝑡 , 𝑡 = Φ −𝑑2 𝐾𝑒−𝑟 𝑇−𝑡 − Φ −𝑑1 𝑆𝑡

 𝑑1 =
1

𝜎 𝑇−𝑡
ln

𝑆𝑡

𝐾
+ 𝑟 +

𝜎2

2
𝑇 − 𝑡

 𝑑2 = 𝑑1 − 𝜎 𝑇 − 𝑡

 Note that 𝑃 𝑆𝑡 , 𝑡 is derived from put-call parity

 Put-call parity: 𝐶𝐸 − 𝑃𝐸 = 𝑆 − 𝐾𝑒−𝑟 𝑇−𝑡

 Implied volatility

 Value of volatility when back-solving an option pricing model (such as BS) with 
current market price 



Monte Carlo 

Method



Key Idea

 Use repeated random 

sampling to obtain 

numerical estimate

 The estimate is usually 

average in our course

 Example: estimate 𝜋
(picture credit: nicoguaro)

https://en.wikipedia.org/wiki/Monte_Carlo_method#/media/File:Pi_30K.gif


Standard Monte Carlo

 HW2 5a: price a European call option

 Recall payoff function is max(𝑆𝑇 − 𝐾, 0)

 Estimate 𝔼[max 𝑆𝑇 − 𝐾, 0 ] by sample average 
1

𝑛
σ𝑖=1
𝑛 max(𝑆𝑇

(𝑖)
− 𝐾, 0)

 Algorithm

 1) Generate 𝑍 ∼ 𝑁(0,1)

 2) Set 𝑆𝑇 = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑇+𝜎 𝑇𝑍

 3) Compute 𝝅𝒊 = 𝐦𝐚𝐱(𝑺𝑻 − 𝑲, 𝟎)

 4) Repeat 1 to 3 for 𝑖 = 1, … , 𝑛

 5) Option price = 
e−rT

n
σ𝑖=1
𝑛 𝜋𝑖



Stopping a Simulation

 Margin of error: terminate a simulation when 
𝑠2

𝑛
≤ 𝑑

 Where 𝑠2 is the sample variance and 𝑑 is the maximum tolerable error

 This is essentially based on the Central Limit Theorem

 Law of large numbers (WLLN): Let 𝑋1, … , 𝑋𝑛 be i.i.d. random variables with

mean 𝜃 and variance 𝜎2, then ത𝑋𝑛 ≈ 𝜃 as 𝑛 → ∞

 Central limit theorem: Let 𝑋1, … , 𝑋𝑛 be i.i.d. random variables with mean 𝜃

and finite variance 𝜎2, then ത𝑋𝑛 ≈ N 𝜃,
𝜎2

𝑛
as 𝑛 → ∞



Random 

Variable 

Generation



Key ideas

 Monte Carlo methods rely on repeated random sampling

 Need way(s) to generate different random variables

 Only Unif(0,1) and N(0,1) can be generated without any algorithm

 Technically only Unif(0,1) (pseudorandom number)

 N(0,1) is generated by special algorithm as well, e.g., Box–Muller transformation

 They are omitted in this course

 Modulo operation: find the remainder of a division; denoted by mod.

 E.g., 97 = 7 (mod 10), 25 = 1 (mod 8)

 Use inverse transform/rejection sampling if other distribution appears



Inverse Transform

 Probability integral transform: if 𝑋 is a continuous random variable with cdf
𝐹𝑋, then 𝑌 = 𝐹𝑋 𝑋 ∼ Unif(0,1)

 Therefore, if we know 𝑋 ∼ 𝐹𝑋 (i.e., the cdf), we can generate 𝑋 out of 

𝑈~Unif(0,1)

 Need to derive cdf if only pdf is given

 Algorithm (discrete)

 Generate 𝑈 ∼ Unif(0,1)

 𝑋 = 𝑥𝑗 if σ𝑖=0
𝑗−1

𝑝𝑖 ≤ 𝑈 < σ𝑖=0
𝑗

𝑝𝑖

 Algorithm (continuous)

 Generate 𝑈 ∼ Unif(0,1)

 𝑋 = 𝐹𝑋
−1(𝑈) assuming the inverse exists

 Example: HW2 1c, 4a



Rejection Sampling

 If we can simulate 𝑌 ∼ 𝐺𝑌 easily, we can use the proportional distribution as 

a basis to simulate 𝑋 with pdf 𝑓(𝑥)

 Algorithm

 1) Find 𝑐 = max
𝑦

𝑓 𝑦

𝑔 𝑦

 2) Generate 𝑌𝑖 from a density g: 𝑈1 ∼ Unif(0,1) ⇒ 𝑌𝑖 = 𝐺−1(𝑈1)

 3) Generate 𝑈2 ∼ Unif(0,1)

 4) If U2 ≤
1

𝑐
⋅
𝑓 𝑌𝑖

𝑔 𝑌𝑖
, set 𝑋𝑖 = 𝑌𝑖, otherwise return to 2

 Example: HW2 3, 4b

 Inverse transform is rejection sampling with 𝑐 = 1

 Because inverse transform simulate from 𝐹 directly (always accept)



Variance 

Reduction 

Technique



Antithetic Variables

 If we are able to generate negatively correlated underlying random 

variables, the estimator can have lower variance as compared with 

independent samples

 This requires the target function ℎ(𝑥) to be monotone

 Show ℎ′ 𝑥 ≥ 0 or ℎ′ 𝑥 ≤ 0 within the target range for monotonicity

 As ℎ(𝑥) is monotone, Cov ℎ 𝑈 , ℎ 1 − 𝑈 ≤ 0 where 𝑈 ∼ Unif(0,1)

 As half of your variables are antithetic, you only need to generate 
𝑛

2
numbers for 

𝑛 samples



Antithetic Variables

 Algorithm:

 1) Generate 𝑈 ∼ Unif(0,1)

 2) Set 𝑋𝑖 = 𝐹−1 𝑈 , 𝑌𝑖 = 𝐹−1(1 − 𝑈) (note: want X, Y same distribution but negative 

correlation)

 3) Repeat 1 and 2 for n times

 4) ෠𝜃 =
1

2𝑛
σ𝑖=1
𝑛 ℎ 𝑋𝑖 + ℎ 𝑌𝑖

 Note:

 𝐹−1 𝑈 is monotone in general as cdf is monotone

 Hence ℎ 𝐹−1 𝑈 is monotone if ℎ(⋅) is monotone



Q&A


