RMSC5102
 Midterm Review

Leung Man Fung, Heman
Spring, 2021

Agenda

- Review
- Basic Knowledge
- The Black-Scholes World
- Monte Carlo Method
- Random Variable Generation
- Variance Reduction Technique
- Q\&A

Basic Knowledge

Geometric Distribution

- $X \sim \operatorname{Geo}(p)$
- number of Bernoulli trials X needed to get 1 success
- each trial has a probability of success p
- Pmf: $\mathbb{P}(X=x)=(1-p)^{x-1} p$ for $x=1,2, \ldots$
- Mean: $\mathbb{E}(X)=\frac{1}{p}$
- Variance: $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$
- Related to rejection sampling

Exponential Distribution

- $X \sim \operatorname{Exp}(\lambda)$
- Continuous analogue of the geometric distribution
- We adopt the rate parametrization instead of scale
- Pdf: $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$, otherwise 0
- Cdf: $F(x)=1-e^{-\lambda x}$ for $x \geq 0$
- Mean: $\mathbb{E}(X)=\frac{1}{\lambda}$
- Variance: $\operatorname{Var}(X)=\frac{1}{\lambda^{2}}$
- Memoryless property: $\mathbb{P}(X>s+t \mid X>s)=\mathbb{P}(X>t)$ for $s, t \geq 0$
- Exponential distribution is the only continuous distribution that has this property
- Useful representation: if $Y \sim \operatorname{Exp}(1)$, then $\frac{Y}{\lambda} \sim \operatorname{Exp}(\lambda)$

Some Properties of Expectation, Variance and Covariance

- Law of the unconscious statistician: $\mathbb{E}[g(X)]=\sum_{i=1}^{n} g\left(x_{i}\right) \mathbb{P}\left(X=x_{i}\right)$
- Also holds for continuous random variables
- Translation/rescale:
- $\mathbb{E}(a X+b)=a \mathbb{E}(X)+b$
- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
- $\operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y), \operatorname{Cov}(X, X)=\operatorname{Var}(X)$
- Linearity of expectation: $\mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)$
- Alternative formula for variance: $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}$
- Example: HW1 5, HW2 1

Geometric Brownian Motion

- SDE: $\mathrm{dS}_{\mathrm{t}}=r S_{t} d t+\sigma S_{t} d W_{t} \Rightarrow \mathrm{~S}_{\mathrm{t}}=S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}}$
- Use $S_{T}=S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right)^{T+\sigma \sqrt{T} Z}}$ in simulation to avoid simulating intermediate prices
- Algorithm:
- Generate $Z \sim N(0,1)$
- Set $S_{T}=S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Z}$
- Example: HW1 1, 2; HW2 5
- Question may specify stock price dynamic other than GBM
- Use the given dynamic to simulate S_{T} like generating random variables

The BlackScholes World

Risk Neutral Valuation

- $V_{t}=e^{-r(T-t)} \mathbb{E}\left[f\left(S_{t}, t\right)\right]$
- Take expectation w.r.t. real world probability?
- E.g., with insider info you know price of a certain stock will likely go up
- Problem of the discount rate
- If real world probability is used, discount rate has to accommodate the level of risk (think about the discount rate you use in DCF)
- If risk neutral probability is used, discount rate = risk free rate (observable)
- Just give you another way of looking at risk neutral approach
- The above formula always hold. Why do we need model like GBM then?
- Because $r, t, T, f(\cdot, \cdot)$ are known/observable but S_{t} is not

Black-Scholes-Merton Model

- Black-Scholes formula
- $C\left(S_{t}, t\right)=\Phi\left(d_{1}\right) S_{t}-\Phi\left(d_{2}\right) K e^{-r(T-t)}$,
- $P\left(S_{t}, t\right)=K e^{-r(T-t)}-\mathrm{S}_{\mathrm{t}}+C\left(S_{t}, t\right)=\Phi\left(-d_{2}\right) K e^{-r(T-t)}-\Phi\left(-d_{1}\right) S_{t}$
- $d_{1}=\frac{1}{\sigma \sqrt{T-t}}\left[\ln \left(\frac{S_{t}}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)\right]$
- $d_{2}=d_{1}-\sigma \sqrt{T-t}$
- Note that $P\left(S_{t}, t\right)$ is derived from put-call parity
- Put-call parity: $C_{E}-P_{E}=S-K e^{-r(T-t)}$
- Implied volatility
- Value of volatility when back-solving an option pricing model (such as BS) with current market price

Monte Carlo Method

Key Idea

Use repeated random sampling to obtain numerical estimate

The estimate is usually average in our course
Example: estimate π (picture credit: nicoguaro)

Standard Monte Carlo

- HW2 5a: price a European call option
- Recall payoff function is $\max \left(S_{T}-K, 0\right)$
- Estimate $\mathbb{E}\left[\max \left(S_{T}-K, 0\right)\right]$ by sample average $\frac{1}{n} \sum_{i=1}^{n} \max \left(S_{T}^{(i)}-K, 0\right)$
- Algorithm
- 1) Generate $Z \sim N(0,1)$
- 2) Set $S_{T}=S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right)^{T+\sigma \sqrt{T}} Z}$
- 3) Compute $\boldsymbol{\pi}_{i}=\max \left(\boldsymbol{S}_{\boldsymbol{T}}-\boldsymbol{K}, \mathbf{0}\right)$
- 4) Repeat 1 to 3 for $i=1, \ldots, n$
- 5) Option price $=\frac{\mathrm{e}^{-\mathrm{rT}}}{\mathrm{n}} \sum_{i=1}^{n} \pi_{i}$

Stopping a Simulation

- Margin of error: terminate a simulation when $\frac{s^{2}}{\sqrt{n}} \leq d$
- Where s^{2} is the sample variance and d is the maximum tolerable error
- This is essentially based on the Central Limit Theorem
- Law of large numbers (WLLN): Let X_{1}, \ldots, X_{n} be i.i.d. random variables with mean θ and variance σ^{2}, then $\bar{X}_{n} \approx \theta$ as $n \rightarrow \infty$
- Central limit theorem: Let X_{1}, \ldots, X_{n} be i.i.d. random variables with mean θ and finite variance σ^{2}, then $\bar{X}_{n} \approx \mathrm{~N}\left(\theta, \frac{\sigma^{2}}{n}\right)$ as $n \rightarrow \infty$

Random

 Variable Generation
Key ideas

- Monte Carlo methods rely on repeated random sampling
- Need way(s) to generate different random variables
- Only Unif $(0,1)$ and $N(0,1)$ can be generated without any algorithm
- Technically only Unif(0,1) (pseudorandom number)
- $\mathrm{N}(0,1)$ is generated by special algorithm as well, e.g., Box-Muller transformation
- They are omitted in this course
- Modulo operation: find the remainder of a division; denoted by mod.
- E.g., $97=7(\bmod 10), 25=1(\bmod 8)$
- Use inverse transform/rejection sampling if other distribution appears

Inverse Transform

- Probability integral transform: if X is a continuous random variable with cdf F_{X}, then $Y=F_{X}(X) \sim \operatorname{Unif}(0,1)$
- Therefore, if we know $X \sim F_{X}$ (i.e., the cdf), we can generate X out of $U \sim \operatorname{Unif}(0,1)$
- Need to derive cdf if only pdf is given
- Algorithm (discrete)
- Generate $U \sim \operatorname{Unif}(0,1)$
- $X=x_{j}$ if $\sum_{i=0}^{j-1} p_{i} \leq U<\sum_{i=0}^{j} p_{i}$
- Algorithm (continuous)
- Generate $U \sim \operatorname{Unif}(0,1)$
- $X=F_{X}^{-1}(U)$ assuming the inverse exists
- Example: HW2 1c, 4a

Rejection Sampling

- If we can simulate $Y \sim G_{Y}$ easily, we can use the proportional distribution as a basis to simulate X with pdf $f(x)$
- Algorithm
- 1) Find $c=\max _{y} \frac{f(y)}{g(y)}$
- 2) Generate Y_{i} from a density g: $U_{1} \sim \operatorname{Unif}(0,1) \Rightarrow Y_{i}=G^{-1}\left(U_{1}\right)$
- 3) Generate $U_{2} \sim \operatorname{Unif}(0,1)$
- 4) If $\mathrm{U}_{2} \leq \frac{1}{c} \cdot \frac{f\left(Y_{i}\right)}{g\left(Y_{i}\right)^{\prime}}$ set $X_{i}=Y_{i}$, otherwise return to 2
- Example: HW2 3, 4b
- Inverse transform is rejection sampling with $c=1$
- Because inverse transform simulate from F directly (always accept)

Variance Reduction Technique

Antithetic Variables

- If we are able to generate negatively correlated underlying random variables, the estimator can have lower variance as compared with independent samples
- This requires the target function $h(x)$ to be monotone
- Show $h^{\prime}(x) \geq 0$ or $h^{\prime}(x) \leq 0$ within the target range for monotonicity
- As $h(x)$ is monotone, $\operatorname{Cov}[h(U), h(1-U)] \leq 0$ where $U \sim \operatorname{Unif}(0,1)$
- As half of your variables are antithetic, you only need to generate $\frac{n}{2}$ numbers for n samples

Antithetic Variables

- Algorithm:
- 1) Generate $U \sim \operatorname{Unif}(0,1)$
- 2) Set $X_{i}=F^{-1}(U), Y_{i}=F^{-1}(1-U)$ (note: want X, Y same distribution but negative correlation)
- 3) Repeat 1 and 2 for n times
- 4) $\hat{\theta}=\frac{1}{2 n} \sum_{i=1}^{n}\left[h\left(X_{i}\right)+h\left(Y_{i}\right)\right]$
- Note:
- $F^{-1}(U)$ is monotone in general as caf is monotone
- Hence $h\left[F^{-1}(U)\right]$ is monotone if $h(\cdot)$ is monotone

