RMSC5102
 Midterm Review

Leung Man Fung, Heman
Spring, 2020

Agenda

- Review
- Stochastic Calculus
- The Black-Scholes World
- Monte Carlo Method
- Random Variable Generation
- Variance Reduction Technique
- Q\&A

Stochastic Calculus

Wiener Process

- Stationary increment: $\mathrm{W}_{\mathrm{t}}-W_{s} \sim N(0, t-s)$
- Independent increment: $W_{t_{4}}-W_{t_{3}} \perp W_{t_{2}}-W_{t_{1}}$
- Starts at zero: $P\left(W_{t_{0}}=0\right)=1$

Finding SDE

- Strategy
- Define $f(x, t)$ and $d X_{t}$
- Apply Ito's lemma to $f\left(X_{t}, t\right)$
- Straight forward
- Example: HW1 1a, 4b; Exercise 2.2

Finding Stochastic Integral

- Strategy
- Guess the function such that it will contain the integrand in its SDE
- Use Ito's lemma to find the SDE of our guess
- Rearrangement the terms and integrate both sides
- Indirect
- Example: HW1 3a, 4a, 4c; Exercise 3.2
- Note (reference: HW1 4a)
- $W_{0}=0$ but it is possible that $f\left(W_{0}, 0\right) \neq 0$
- Stochastic integral may not be further reducible

By Ito's lemma, $d\left(\frac{1}{2} e^{2 W_{t}}\right)=e^{2 W_{t}} d t+e^{2 W_{t}} d W_{t} \Rightarrow e^{2 W_{t}} d W_{t}=d\left(\frac{1}{2} e^{2 W_{t}}\right)-e^{2 W_{t}} d t$ Hence $\int_{0}^{t} e^{2 W_{s}} d W_{s}=\frac{1}{2} e^{2 W_{t}}-\frac{1}{2}-\int_{0}^{t} e^{2 W_{s}} d s$

Geometric Brownian Motion

- SDE: $\mathrm{dS}_{\mathrm{t}}=r S_{t} d t+\sigma S_{t} d W_{t} \Rightarrow \mathrm{~S}_{\mathrm{t}}=S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}}$
- Use $S_{T}=S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Z}$ in simulation to avoid simulating intermediate prices
- Algorithm:
- Generate $Z \sim N(0,1)$
- Set $S_{T}=S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Z}$
- Example: HW1 1, 2; HW2 5
- Question may specify stock price dynamic other than GBM
- Use the given dynamic to simulate S_{T} like generating random variables

The BlackScholes World

Risk Neutral Valuation

- $V_{t}=e^{-r(T-t)} E\left[f\left(S_{t}, t\right)\right]$
- Take expectation w.r.t. real world probability?
- E.g. with insider info you know price of a certain stock will likely go up
- Problem of the discount rate
- If real world probability is used, discount rate has to accommodate the level of risk (think about the discount rate you use in DCF)
- If risk neutral probability is used, discount rate = risk free rate (observable)
- Just give you another way of looking at risk neutral approach

Black-Scholes-Merton Model

- Black-Scholes formula
- $C\left(S_{t}, t\right)=\Phi\left(d_{1}\right) S_{t}-\Phi\left(d_{2}\right) K e^{-r(T-t)}$,
- $P\left(S_{t}, t\right)=K e^{-r(T-t)}-\mathrm{S}_{\mathrm{t}}+C\left(S_{t}, t\right)=\Phi\left(-d_{2}\right) K e^{-r(T-t)}-\Phi\left(-d_{1}\right) S_{t}$
- $d_{1}=\frac{1}{\sigma \sqrt{T-t}}\left[\ln \left(\frac{S_{t}}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right)(T-t)\right]$
- $d_{2}=d_{1}-\sigma \sqrt{T-t}$
- Note that $P\left(S_{t}, t\right)$ is derived from put-call parity
- Put-call parity: $\mathrm{C}_{\mathrm{E}}-P_{E}=S-K e^{-r(T-t)}$
- Implied volatility
- Value of volatility when back-solving an option pricing model (such as BS) with current market price

Monte Carlo Method

Key idea

Use repeated random sampling to obtain numerical estimate

The estimate is usually average in our course
Example: estimate π (picture credit: nicoguaro)

Standard Monte Carlo

- HW2 5a: price a European call option
- Recall payoff function is $\max \left(S_{T}-K, 0\right)$
- Estimate $E\left[\max \left(S_{T}-K, 0\right)\right]$ by sample average $\frac{1}{n} \sum_{i=1}^{n} \max \left(S_{T}^{(i)}-K, 0\right)$
- Algorithm
- 1) Generate $Z \sim N(0,1)$
- 2) Set $S_{T}=S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) T+\sigma \sqrt{T} Z}$
- 3) Compute $\pi_{i}=\max \left(\boldsymbol{S}_{T}-\boldsymbol{K}, \mathbf{0}\right)$
- 4) Repeat 1 to 3 for $i=1, \ldots, n$
- 5) Option price $=\frac{\mathrm{e}^{-\mathrm{rT}}}{\mathrm{n}} \sum_{i=1}^{n} \pi_{i}$

Random

 Variable Generation
Assumption

- We can only generate $U(0,1)$ and $N(0,1)$ random variable
- Any r.v. with other distribution cannot be generated directly (in algorithm)
- If you write R code instead, an advantage will be given. You may use the native function like
- sample() for discrete r.v.
- rexp() for exponential r.v. etc.

Inverse Transform

- If we know $X \sim F_{X}$ (i.e. the cdf), we can generate X out of $U \sim U(0,1)$
- The supporting theory is probability integral transform
- Algorithm (discrete)
- Generate $U \sim U(0,1)$
- $X=x_{j}$ if $\sum_{i=0}^{j-1} p_{i} \leq U<\sum_{i=0}^{j} p_{i}$
- Algorithm (continuous)
- Generate $U \sim U(0,1)$
- $X=F_{X}^{-1}(U)$ assuming the inverse exists
- Example: HW2 1, 4a

Rejection Sampling

- If we can simulate $Y \sim G_{Y}$ easily, we can use the proportional distribution as a basis to simulate X with pdf $f(x)$
- Algorithm
- 1) Find $c=\max _{y} \frac{f(y)}{g(y)}$
- 2) Generate Y_{i} from a density g: $U_{1} \sim U(0,1) \Rightarrow Y_{i}=G^{-1}\left(U_{1}\right)$
- 3) Generate $U_{2}=U(0,1)$
- 4) If $\mathrm{U}_{2} \leq \frac{1}{c} \cdot \frac{f\left(Y_{i}\right)}{g\left(Y_{i}\right)}$, set $X_{i}=Y_{i}$, otherwise return to 2
- Example: HW2 3, 4b

Variance Reduction Technique

Antithetic Variables

- If we are able to generate negatively correlated underlying random variables, the estimator can have lower variance as compared with independent samples
- This requires the target function $h(x)$ to be monotone
- Show $h^{\prime}(x) \geq 0$ or $h^{\prime}(x) \leq 0$ within the target range for monotonicity
- As $h(x)$ is monotone, $\operatorname{Cov}(h(U), h(1-U)) \leq 0$ where $U \sim U(0,1)$
- As half of your variables are antithetic, you only need to generate $\frac{n}{2}$ numbers for n samples
- Example: HW2 3, 4b

Antithetic Variables

- Algorithm:
- 1) Generate $U \sim U(0,1)$
- 2) Set $X_{i}=F^{-1}(U), Y_{i}=F^{-1}(1-U)$ (note: want X, Y same distribution but negative correlation)
- 3) Repeat 1 and 2 for n times
- 4) $\hat{\theta}=\frac{1}{2 n} \sum_{i=1}^{n}\left[h\left(X_{i}\right)+h\left(Y_{i}\right)\right]$
- Note:
- $F^{-1}(U)$ is monotone in general as cdf is monotone
- Hence $h\left[F^{-1}(U)\right]$ is monotone if $h(\cdot)$ is monotone

Stratified Sampling

- If we have information about grouping in the population, then we may use conditional mean (mean of subgroup) as the sample from the population
- Algorithm:
- Generate $V_{i, j}=\frac{1}{B}\left(U_{i, j}+i-1\right)$ where $U_{i, j} \sim U(0,1)$ for $i=1, \ldots, B ; j=1, \ldots, N_{B}$
- Set $X_{i, j}=F^{-1}\left(V_{i, j}\right)$
- $\hat{\theta}=\frac{1}{B \times N_{B}} \sum_{j=1}^{N_{B}}\left[h\left(X_{1, j}\right)+\mathrm{h}\left(X_{2, j}\right)+\cdots+\mathrm{h}\left(X_{B, j}\right)\right]$ (remember to adjust for conditional probability)
- Example: currently none in HW so I will provide one on next page

Stratified Sampling

Exercise 1.1. Consider $\theta=\int_{2}^{\infty}(x-2) e^{-x} d x$. It is known that $\theta=E[f(X)]$ where $X \sim \exp (1)$.
(a)What is $f(X)$?
(b)Provide an algorithm to sample X in $[2, \infty]$.
(c) Provide an algorithm and VBA programme to simulate θ by stratifying X on the interval $[2, \infty]$ with equal probability $1 / 4$ for each stratified interval. The total sample should be 10000 .
(a)

$$
\begin{gathered}
\theta=\int_{2}^{\infty}(x-2) e^{-x} d x=\int_{0}^{\infty}(x-2) \mathbb{I}(x \geq 2) e^{-x} d x \\
\therefore f(X)=(X-2) \mathbb{I}(X \geq 2)
\end{gathered}
$$

(b)

Let $Y=X-2 \mid X \geq 2$. By memoryless property of exponential distribution, $Y \sim \exp (1)$.
Therefore $X \mid X \geq 2$ can be sampled by $-\ln (U)+2$, where $U \sim \operatorname{Unif}(0,1)$.
(c)

Note that $E[(X-2) \mathbb{I}(X \geq 2)]=E[(X-2) \mid X \geq 2] P(X \geq 2)$.

1. Generate $U_{j} \sim \operatorname{Unif}(0,1)$
2. Set $V_{i j}=-\ln \left[\frac{U_{j}+i}{4}\right]+2$, for $i=0,1,2,3$ and $j=1,2, \ldots, 2500$.
3. Compute $Y_{i j}=V_{i j}-2$.
4. Repeat step 1 to 3 for 2500 times for each $i=0,1,2,3$.
5. $\theta_{\text {stra }}=\frac{1}{10000} \sum_{j=1}^{2500}\left(Y_{0 j}+Y_{1 j}+Y_{2 j}+Y_{3 j}\right) \times e^{-2}$.

