
RMSC5102 

Midterm Review
Leung Man Fung, Heman

Spring, 2020



Agenda
 Review

 Stochastic Calculus

 The Black-Scholes World

 Monte Carlo Method

 Random Variable Generation

 Variance Reduction Technique

 Q&A



Stochastic 

Calculus



Wiener Process

 Stationary increment: Wt −𝑊𝑠~𝑁 0, 𝑡 − 𝑠

 Independent increment: 𝑊𝑡4 −𝑊𝑡3 ⊥ 𝑊𝑡2 −𝑊𝑡1

 Starts at zero: 𝑷 𝑾𝒕𝟎 = 𝟎 = 𝟏



Finding SDE

 Strategy

 Define 𝑓(𝑥, 𝑡) and 𝑑𝑋𝑡

 Apply Ito’s lemma to 𝑓(𝑋𝑡 , 𝑡)

 Straight forward

 Example: HW1 1a, 4b; Exercise 2.2



Finding Stochastic Integral

 Strategy

 Guess the function such that it will contain the integrand in its SDE

 Use Ito’s lemma to find the SDE of our guess

 Rearrangement the terms and integrate both sides

 Indirect

 Example: HW1 3a, 4a, 4c; Exercise 3.2

 Note (reference: HW1 4a)

 𝑊0 = 0 but it is possible that 𝑓 𝑊0, 0 ≠ 0

 Stochastic integral may not be further reducible



Geometric Brownian Motion

 SDE: dSt = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 ⇒ St = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑡+𝜎𝑊𝑡

 Use 𝑆𝑇 = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑇+𝜎 𝑇𝑍

in simulation to avoid simulating intermediate prices

 Algorithm:

 Generate 𝑍~𝑁(0,1)

 Set 𝑆𝑇 = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑇+𝜎 𝑇𝑍

 Example: HW1 1, 2; HW2 5

 Question may specify stock price dynamic other than GBM

 Use the given dynamic to simulate 𝑆𝑇 like generating random variables



The Black-

Scholes 

World



Risk Neutral Valuation 

 𝑉𝑡 = 𝑒−𝑟 𝑇−𝑡 𝐸 𝑓 𝑆𝑡, 𝑡

 Take expectation w.r.t. real world probability?

 E.g. with insider info you know price of a certain stock will likely go up

 Problem of the discount rate

 If real world probability is used, discount rate has to accommodate the level of 
risk (think about the discount rate you use in DCF)

 If risk neutral probability is used, discount rate = risk free rate (observable)

 Just give you another way of looking at risk neutral approach



Black–Scholes–Merton Model

 Black-Scholes formula

 𝐶 𝑆𝑡 , 𝑡 = Φ 𝑑1 𝑆𝑡 −Φ 𝑑2 𝐾𝑒−𝑟 𝑇−𝑡 ,

 𝑃 𝑆𝑡 , 𝑡 = 𝐾𝑒−𝑟 𝑇−𝑡 − St + 𝐶 𝑆𝑡 , 𝑡 = Φ −𝑑2 𝐾𝑒−𝑟 𝑇−𝑡 −Φ −𝑑1 𝑆𝑡

 𝑑1 =
1

𝜎 𝑇−𝑡
ln

𝑆𝑡

𝐾
+ 𝑟 +

𝜎2

2
𝑇 − 𝑡

 𝑑2 = 𝑑1 − 𝜎 𝑇 − 𝑡

 Note that 𝑃 𝑆𝑡, 𝑡 is derived from put-call parity

 Put-call parity: CE − 𝑃𝐸 = 𝑆 −𝐾𝑒−𝑟 𝑇−𝑡

 Implied volatility

 Value of volatility when back-solving an option pricing model (such as BS) with 
current market price 



Monte Carlo 

Method



Key idea

 Use repeated random 

sampling to obtain 

numerical estimate

 The estimate is usually 
average in our course

 Example: estimate 𝜋
(picture credit: nicoguaro)

https://en.wikipedia.org/wiki/Monte_Carlo_method#/media/File:Pi_30K.gif


Standard Monte Carlo

 HW2 5a: price a European call option

 Recall payoff function is max(𝑆𝑇 − 𝐾, 0)

 Estimate 𝐸[max 𝑆𝑇 − 𝐾, 0 ] by sample average 
1

𝑛
σ𝑖=1
𝑛 max(𝑆𝑇

(𝑖)
− 𝐾, 0)

 Algorithm

 1) Generate 𝑍~𝑁(0,1)

 2) Set 𝑆𝑇 = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑇+𝜎 𝑇𝑍

 3) Compute 𝝅𝒊 = 𝐦𝐚𝐱(𝑺𝑻 −𝑲, 𝟎)

 4) Repeat 1 to 3 for 𝑖 = 1,… , 𝑛

 5) Option price = 
e−rT

n
σ𝑖=1
𝑛 𝜋𝑖



Random 

Variable 

Generation



Assumption

 We can only generate 𝑈(0,1) and 𝑁(0,1) random variable

 Any r.v. with other distribution cannot be generated directly (in algorithm)

 If you write R code instead, an advantage will be given. You may use the native 
function like 

 sample() for discrete r.v.

 rexp() for exponential r.v. etc.



Inverse Transform

 If we know 𝑋~𝐹𝑋 (i.e. the cdf), we can generate 𝑋 out of 𝑈~𝑈(0,1)

 The supporting theory is probability integral transform

 Algorithm (discrete)

 Generate 𝑈~𝑈(0,1)

 𝑋 = 𝑥𝑗 if σ𝑖=0
𝑗−1

𝑝𝑖 ≤ 𝑈 < σ𝑖=0
𝑗

𝑝𝑖

 Algorithm (continuous)

 Generate 𝑈~𝑈(0,1)

 𝑋 = 𝐹𝑋
−1(𝑈) assuming the inverse exists

 Example: HW2 1, 4a



Rejection Sampling

 If we can simulate 𝑌~𝐺𝑌 easily, we can use the proportional distribution as a 

basis to simulate 𝑋 with pdf 𝑓(𝑥)

 Algorithm

 1) Find 𝑐 = max
𝑦

𝑓 𝑦

𝑔 𝑦

 2) Generate 𝑌𝑖 from a density g: 𝑈1~𝑈(0,1) ⇒ 𝑌𝑖 = 𝐺−1(𝑈1)

 3) Generate 𝑈2 = 𝑈(0,1)

 4) If U2 ≤
1

𝑐
⋅
𝑓 𝑌𝑖

𝑔 𝑌𝑖
, set 𝑋𝑖 = 𝑌𝑖 , otherwise return to 2

 Example: HW2 3, 4b



Variance 

Reduction 

Technique



Antithetic Variables

 If we are able to generate negatively correlated underlying random 

variables, the estimator can have lower variance as compared with 

independent samples

 This requires the target function ℎ(𝑥) to be monotone

 Show ℎ′ 𝑥 ≥ 0 or ℎ′ 𝑥 ≤ 0 within the target range for monotonicity

 As ℎ(𝑥) is monotone, 𝐶𝑜𝑣 ℎ 𝑈 , ℎ 1 − 𝑈 ≤ 0 where 𝑈~𝑈(0,1)

 As half of your variables are antithetic, you only need to generate 
𝑛

2
numbers for 

𝑛 samples

 Example: HW2 3, 4b



Antithetic Variables

 Algorithm:

 1) Generate 𝑈~𝑈(0,1)

 2) Set 𝑋𝑖 = 𝐹−1 𝑈 ,𝑌𝑖 = 𝐹−1(1 − 𝑈) (note: want X, Y same distribution but negative 
correlation)

 3) Repeat 1 and 2 for n times

 4) 𝜃 =
1

2𝑛
σ𝑖=1
𝑛 ℎ 𝑋𝑖 + ℎ 𝑌𝑖

 Note:

 𝐹−1 𝑈 is monotone in general as cdf is monotone

 Hence ℎ 𝐹−1 𝑈 is monotone if ℎ(⋅) is monotone



Stratified Sampling

 If we have information about grouping in the population, then we may use 

conditional mean (mean of subgroup) as the sample from the population

 Algorithm:

 Generate 𝑉𝑖,𝑗 =
1

𝐵
(𝑈𝑖,𝑗 + 𝑖 − 1) where 𝑈𝑖,𝑗~𝑈(0,1) for 𝑖 = 1,… , 𝐵; 𝑗 = 1,… , 𝑁𝐵

 Set 𝑋𝑖,𝑗 = 𝐹−1(𝑉𝑖,𝑗)

 𝜃 =
1

𝐵×𝑁𝐵
σ𝑗=1
𝑁𝐵 ℎ 𝑋1,𝑗 + h 𝑋2,𝑗 +⋯+ h 𝑋𝐵,𝑗 (remember to adjust for conditional 

probability)

 Example: currently none in HW so I will provide one on next page



Stratified Sampling



Q&A


