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Agenda

Review

◦ Monte Carlo Method

◦ Random Variable Generation

◦ Variance Reduction Technique

◦ Simulation in Action

Q&A

2



Monte 
Carlo 
Method
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Standard Monte Carlo

HW2 5a: price a European call option

◦ Recall payoff function is max(𝑆𝑇 − 𝐾, 0)

◦ Estimate 𝐸[max 𝑆𝑇 −𝐾, 0 ] by sample average 
1

𝑛
σ𝑖=1
𝑛 max(𝑆𝑇

(𝑖)
− 𝐾, 0)

Algorithm

◦ 1) Generate 𝑍~𝑁(0,1)

◦ 2) Set 𝑆𝑇 = 𝑆0𝑒
𝑟−

1

2
𝜎2 𝑇+𝜎 𝑇𝑍

◦ 3) Compute 𝝅𝒊 = 𝐦𝐚𝐱(𝑺𝑻 −𝑲,𝟎)

◦ 4) Repeat 1 to 3 for 𝑖 = 1,… , 𝑛

◦ 5) Option price = 
e−rT

n
σ𝑖=1
𝑛 𝜋𝑖
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Things to Note

General algorithm (always refer to tutorial notes)

◦ 1) Generate random variable 𝑋𝑖

◦ 2) Calculate ℎ𝑖 = ℎ(𝑋𝑖), where ℎ is the target function

◦ 3) Repeat 1 and 2 for n times

◦ 4) 𝜃 =
1

𝑛
σ𝑗=1
𝑛 ℎ𝑗 (remember to do discounting if necessary)

Be careful of…

◦ 𝑋𝑖 is not necessarily Normal. Some students directly used the previous algorithm in midterm

◦ The target function ℎ(𝑥) that you are interested in

◦ We need to adjust for conditional probability in stratified sampling sometimes because ℎ changes

◦ How to generate 𝑋𝑖. If you do not write R code, you need to use inverse transform 

◦ For any 𝑋𝑖 that does not follow 𝑁(0,1) or 𝑈(𝑎, 𝑏). This includes discrete uniform r.v. (to be discussed)
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Random 
Variable 

Generation
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Inverse Transform

If we know 𝑋~𝐹𝑋 (i.e. the cdf), we can generate 𝑋 out of 𝑈~𝑈 0,1

◦ Algorithm (discrete)

◦ Generate 𝑈~𝑈(0,1)

◦ 𝑋 = 𝑥𝑗 if σ𝑖=0
𝑗−1

𝑝𝑖 ≤ 𝑈 < σ𝑖=0
𝑗

𝑝𝑖

◦ Algorithm (continuous)

◦ Generate 𝑈~𝑈(0,1)

◦ 𝑋 = 𝐹𝑋
−1(𝑈) assuming the inverse exists

Do NOT use the continuous version for discrete uniform r.v.

◦ As argued in my Q&A, this is not appropriate in view of algorithm
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Rejection Sampling

If we can simulate 𝑌~𝐺𝑌 easily, we can use the proportional distribution as a basis to simulate 𝑋

with pdf 𝑓(𝑥)

Algorithm

◦ 1) Find 𝑐 = max
𝑦

𝑓 𝑦

𝑔 𝑦

◦ 2) Generate 𝑌𝑖 from a density g: 𝑈1~𝑈(0,1) ⇒ 𝑌𝑖 = 𝐺−1(𝑈1)

◦ 3) Generate 𝑈2 = 𝑈(0,1)

◦ 4) If U2 ≤
1

𝑐
⋅
𝑓 𝑌𝑖

𝑔 𝑌𝑖
, set 𝑋𝑖 = 𝑌𝑖, otherwise return to 2

Number of iterations needed: 𝑁~𝐺𝑒𝑜
1

𝑐
⇒ 𝐸 𝑁 = 𝑐
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Exercise
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Variance 
Reduction 
Technique
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Antithetic Variables

If we are able to generate negatively correlated underlying random variables, the estimator can 

have lower variance as compared with independent samples

◦ This requires the target function ℎ(𝑥) to be monotone

◦ Show ℎ′ 𝑥 ≥ 0 or ℎ′ 𝑥 ≤ 0 within the target range for monotonicity

◦ As ℎ(𝑥) is monotone, 𝐶𝑜𝑣 ℎ 𝑈 , ℎ 1 − 𝑈 ≤ 0 where 𝑈~𝑈(0,1)

◦ As half of your variables are antithetic, you only need to generate 
𝑛

2
numbers for 𝑛 samples
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Antithetic Variables

Algorithm:

◦ 1) Generate 𝑈~𝑈(0,1)

◦ 2) Set 𝑋𝑖 ∼ 𝐹, 𝑌𝑖 = 𝐹−1(1 − 𝑈) (note: want X, Y same distribution but negative correlation)

◦ 3) Repeat 1 and 2 for n times

◦ 4) 𝜃 =
1

2𝑛
σ𝑖=1
𝑛 ℎ 𝑋𝑖 + ℎ 𝑌𝑖

Note:

◦ 𝐹−1 𝑈 is monotone in general as cdf is monotone

◦ Hence ℎ 𝐹−1 𝑈 is monotone if ℎ(⋅) is monotone
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Exercise
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Stratified Sampling

If we have information about grouping in the population, then we may use conditional mean 

(mean of subgroup) as the sample from the population

Algorithm:

◦ Generate 𝑉𝑖,𝑗 =
1

𝐵
(𝑈𝑖,𝑗 + 𝑖 − 1) where 𝑈𝑖,𝑗~𝑈(0,1) for 𝑖 = 1,… , 𝐵; 𝑗 = 1,… ,𝑁𝐵

◦ Set 𝑋𝑖,𝑗 = 𝐹−1(𝑉𝑖,𝑗)

◦ 𝜃 =
1

𝐵×𝑁𝐵
σ
𝑗=1
𝑁𝐵 ℎ 𝑋1,𝑗 + h 𝑋2,𝑗 +⋯+ h 𝑋𝐵,𝑗 (average over subsamples and bins, remember to adjust 

for conditional probability) 

Note:

◦ I have changed the representation to matrix elements 𝑉𝑖,𝑗 for clearness

◦ 𝑖 represents index of bins and 𝑗 represent index of elements within a bin

14



Stratified Sampling

When to adjust for conditional probability?

◦ Try to write out the expectation you are trying to approximate (e.g. Ch6 p.43)

◦ Usually you need to when there is an indicator or you have restricted the support

◦ If you have time, you can try to simulate and compare with standard Monte Carlo

◦ If the estimates differ a lot, probably you need to

◦ Do ALL questions first
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Control Variate

If we combine the estimate of our target unknown quantity with estimates of some known 

quantities, we can exploit the known information

Algorithm:

◦ Find 𝜇𝑌 for 𝑌 with a known distribution (or estimate 𝜇𝑌 via pilot simulation) 

◦ Generate 𝑋𝑖 ∼ 𝐹, 𝑌𝑖 for 𝑖 = 1, … , 𝑛

◦ Compute ത𝑋, ത𝑌, ො𝜎𝑋𝑌, ො𝜎𝑌
2

◦ 𝜃 = ത𝑋 −
ෝ𝜎𝑋𝑌

ෝ𝜎𝑌
2

ത𝑌 − 𝜇𝑌

Pilot simulation: we can run a simulation with small sample size (e.g. 𝑚 = 100) and compute 

ො𝜎𝑋𝑌, ො𝜎𝑌
2 and 𝜇𝑌 = ത𝑌𝑚 based on this pilot sample. Then we can use their values when we compute 

𝜃 = ത𝑋𝑛 −
ෝ𝜎𝑋𝑌

ෝ𝜎𝑌
2

ത𝑌𝑛 − 𝜇𝑌 for our target 𝑛 samples
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Control Variate

Properties of effective control: evaluable from simulation data, known mean and high correlation 

with the simulation variable. Possible candidates are underlying random variable (e.g. uniform 

when we use inverse transform) and martingale transform (will not be tested)

Note:

◦ The algorithm in last slide is one-off, i.e. it does not affect each sample

◦ So we should use control variate last if we were to combine the methods (e.g. HW4 Q3)
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Exercise
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Importance Sampling

If certain values of the simulation variable have more impact on the parameter of interest (e.g. 

probability of a rare event)

◦ We can try to “emphasize” those values by sampling them more frequently and reduce variance

◦ This can be done by changing the probability measure using the likelihood ratio as weight

Algorithm:

◦ Find the likelihood ratio 
𝑓 𝑥

𝑔 𝑥
where 𝑓(𝑥) is the original target pdf

◦ Generate 𝑋𝑖~𝐺 for 𝑖 = 1, … , 𝑛

◦ 𝜃 =
1

𝑛
σ𝑖=1
𝑛 ℎ 𝑋𝑖 𝑓 𝑋𝑖

𝑔 𝑋𝑖

Maximum principle: choose 𝑔 such that both 𝑔(𝑥) and ℎ 𝑥 𝑓(𝑥) take maximum values at the 

same 𝑥 = 𝑥∗ (not in our syllabus, just for your reference)
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Importance Sampling

A possible candidate for 𝑔(𝑥) is the tilted density

Tilted density: 𝑓𝑡 𝑥 =
𝑒𝑡𝑥𝑓 𝑥

𝑀𝑋 𝑡
where 𝑀𝑋(𝑡) is the moment generating function of 𝑋

Choice of 𝑡 in importance sampling

◦ Find the upper bound 
ℎ 𝑥 𝑓 𝑥

𝑓𝑡(𝑥)
≤

ℎ 𝑥𝑡
∗ 𝑓 𝑥𝑡

∗

𝑓𝑡(𝑥𝑡
∗)

and minimize for 𝑡

◦ The upper bound should only depends on 𝑡 for minimization

◦ In other words, find 𝑥 = 𝑥𝑡
∗ such that 

ℎ 𝑥 𝑓 𝑥

𝑓𝑡(𝑥)
≤

ℎ 𝑥𝑡
∗ 𝑓 𝑥𝑡

∗

𝑓𝑡(𝑥𝑡
∗)

for all 𝑥 in the support

◦ 𝑥𝑡
∗ has subscript 𝑡 because it may depend on 𝑡

◦ Then minimize 
ℎ 𝑥𝑡

∗ 𝑓 𝑥𝑡
∗

𝑓𝑡(𝑥𝑡
∗)

with respect to 𝑡
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Exercise
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Simulation 
in Action
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Down-and-in Call Option

Price of down-and-in option: 𝐶𝑑𝑖 = 𝑒−𝑟𝑇𝐸 𝑆𝑇 − 𝐾 +𝕀 min
0≤𝑡≤𝑇

𝑆𝑡 < 𝑉

Algorithm:

◦ 1) Generate 𝑍 ∼ 𝑁(0,1)

◦ 2) Set 𝑆𝑡𝑖 = 𝑆𝑡𝑖−1 exp 𝑟 −
1

2
𝜎2 𝑡𝑖 − 𝑡𝑖−1 + 𝜎 𝑡𝑖 − 𝑡𝑖−1𝑍

◦ 3) Repeat step 1 and 2 for 𝑖 = 1,… , 𝑛 where 𝑡0 = 0 and 𝑡𝑛 = 𝑇

◦ 4) If min
𝑖
𝑆𝑡𝑖 < 𝑉, set 𝐶𝑗 = 𝑒−𝑟𝑇max 𝑆𝑇 − 𝐾, 0 . Otherwise set 𝐶𝑗 = 0

◦ 5) Repeat step 3 and 4 for 𝑗 = 1, … , 𝑁

◦ 6) The price is given by 𝜃 =
1

𝑁
σ𝑗=1
𝑁 𝐶𝑗
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Down-and-in Call Option

What if you already have the price of a vanilla call of the same parameters?

◦ i.e. 𝐶𝑣 = 𝑒−𝑟𝑇𝐸 𝑆𝑇 − 𝐾 +

◦ Possible to evaluate 𝐸 𝕀 min
0≤𝑡≤𝑇

𝑆𝑡 < 𝑉 and combine with 𝐶𝑣 directly

◦ This probably will not be tested. Just to stimulate your thinking

◦ Your target function ℎ becomes 𝕀 min
0≤𝑡≤𝑇

𝑆𝑡 < 𝑉 in that case

◦ This is kind of like adjusting for conditional probability

24



Path-dependent Option

Problem with discretization

◦ The discretized process does not have the correct transition density

◦ First order Euler scheme has normal increments

◦ Second order Milstein scheme has non-central chi square increments

◦ Optimal tradeoff between 𝑛 and 𝑁 exists for the two schemes. See Duffie and Glynn (1995)

◦ Content of the paper will not be tested

◦ The discretized process may incorrectly evaluate the payoff

◦ E.g. Asian option

◦ Possible solution: Brownian bridge. See Beaglehole, Dybvig and Zhou (1997)
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Path-dependent Option

American option

◦ Problem with branching paths

◦ Possible solution: linear regression. See Longstaff and Schwartz (2001)

◦ Just for your interest

◦ Consider taking courses from Prof. Wong :P He taught us this in undergrad
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Q&A
Thank you for taking RMSC5102! Write me (or department) an email if you like my tutorials :P

Let’s keep in touch :)
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