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|) Probability and statistics

Discrete random variables

Random variables: numeric quantities that take different values with specified probabilities
Discrete random variable: a R.V. that takes value from a discrete set of numbers

Probability mass function: a pmf assigns a probability to each possible value x of the discrete
random variable X, denoted by f(x) = P(X = x)

™. f(x;) = 1 (total probability rule)

Cumulative distribution function: a cdf gives the probability that X is less than or equal to the
value x, denoted by F(x) = P(X < x)

Expected value: u = E(X) = X, x;P(X = x;) (the idea is “probability weighted average”)
i=1

Variance: 62 = Var(X) = Y ,(x; — u)?P(X = x;) (the idea is “probability weighted distance
from mean”)

Alternatively Var(X) = E(X?) — [E(X)]?
Translation/rescale: E(aX + b) = aE(X) + b, Var(aX + b) = a*Var(X)
Linearity of expectation: E(QX1-, X;) = X1 E(X;)
Moment generating function: My (t) = E(e**) = Y, e™iP(X = x;)

anX(t) |
agn =0

E(X™) =

Binomial distribution

Factorial:n!=nx (n—1) X ...xX 1, notethat 0! = 1

n!
(n—k)!

Permutation (order is important): P} =

Combination (order is not important): Ci} = also denoted as (Z)

n!
kl(n-k)!

Binomial distribution: probability distribution on the number of successes X in n independent
experiments, each experiment has a probability of success p, then X~B(n,p)

Pmf: P(X =x) = (Z)px(l —p)"*forx=0,1,2,..,n

Mgf: My (t) = (1 — p + pet)"
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Mean: E(X) = np

Variance: Var(X) = np(1 — p)

Poisson distribution

Poisson distribution: probability distribution on the number of occurrence X (usually of a rare
event) over a period of time or space with rate 4, then X~Po(A4). Useful in modelling jump

-2
e orx=0,1,2, ..

x!

Mgf: My (t) = exp[A(et — 1)]

Pmf: P(X =x) =

Mean: E(X) = A

Variance: Var(X) = A

Continuous random variables

Continuous random variable: a R.V. that takes value over an interval of numbers

Probability density function: a pdf specifies the probability of the random variable falling within
a particular range of values, denoted by f(x)

Pla<X<b)= fabf(x)dx, which is the area under the curve fromatob

P(X =a)= f;f(x)dx =0 foralla

I f(x)dx = 1 (total probability rule)

Cumulative distribution function: a cdf gives the probability that X is less than or equal to the
value x, denoted by F(x) = P(X < x) = f_xoof(t)dt

Pla<X<b)= f:f(x)dx = F(b) — F(a) (by the fundamental theorem of calculus)

Expected value: u = E(X) = fjooo xf (x)dx (the idea is “probability weighted average”)

Variance: ¢ = Var(X) = f_oooo(x —wW?*f(x)dx = f_ooooxzf(x)dx — u? (the idea is “probability
weighted distance from mean”)

oo

Moment generating function: Mx(t) = E(e™) = [__e™f(x)dx
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Uniform distribution

Uniform distribution: if X follows uniform distribution on the interval [a, b], then it has the same
probability density at any point in the interval and we denote it by X~U(a, b). Basic R.V. in
probability integral transform

Pdf: f(x) = L fora<x< b, otherwise 0
b—a

x -_—
Cdf: F(x) = jﬁdt=[L] =Zfora<x<bh
- a

b—a - b—-a
etb_eta
Mgf: My (t) = pr fort #0
a+b

Mean: E(X) = T

(b—a)?

Variance: Var(X) = -

Normal distribution

Normal distribution: if X follows normal distribution with mean u and variance o2, then
X~N(u, 0?). Often used to represent continuous random variable with unknown distributions

Y )2
Pdf:f(x)=\/%e 202°M for —o0 < x < o0

Mgf: My (t) = exp (,ut + 62;2)
Standard normal distribution: Z~N(0,1)

Cdf of standard normal: denoted as ®(z) = P(Z < z)
P(a<Z<b)=P(Z<b)—P(Z<a)=>0b)—P(a)

®(—z) = 1 — ®(2) by symmetric property

Percentile of standard normal: ®(1.645) = 0.95, ®(1.96) = 0.975

Standardization: if X~N(u, 02), then XU;“ ~N(0,1)

P(a<X<b)=P(a%‘<z<b%")=q>(b;“)_¢(a—_u)

g g
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Some remarks

Variance of sum: Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)

Tower rule of expectation: E(X) = E[E(X|Y)]

Law of total variance (EVE): Var(X) = E[Var(X|Y)] + Var[E(X|Y)]

Sum of poisson: if X~Po(A1,),Y~Po(A,) independently, then X + Y~Po(1; + 1,)

Sum of normal: if X~N(uy, 062), Y~N(u,, 02) independently, then X + Y~N(u; + iy, 02 + 0%)

92
Square of standard normal: if X~N (i, 62), the Z? = [%] ~)(12

Sum of chi square: if X~y2,Y~x2,thenX + Y~x2, .,
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I1) Financial derivative

Forward

Payoff: S; — K (long),K — S; (short)

Pricing: f =S — Ke "T-9, F = §e7(T-D

With known cash income: f =S —I — Ke "T=9,F = (§ — )e™ ™D, [ = PV (income)
With known dividend yield: f = Se=9T=0 — Ke="(T=-0 F = §e(r-a)(T-0

Minimum variance hedge ratio: h* = p X ? = Nj = h* X N, (since h = %)
F S

Option

Upper bounds: C; < €4, < S,P < Ke 7T D P, <K

Lower bounds: maX(S — Ke 70, 0) < Cp < Cy, max(Ke‘T(T—t) -5, 0) <P, <P,
Put-call parity: Cp — P =S —1 — Ke™™T=D (idea is call — put = forward)

Put call inequality: S — K < C4 — P, < S — Ke 7(T0)

European-American relationship: Py, > Pg, C, = Cg (for non-dividend-paying)

Binomial tree

rét

Risk neutral probability: g = eu_; ,U = e"m, d=u"l=e Vet

Pricing: f = e " [qf, + (1 — @) f4]

Backward induction: start from payoff as terminal prices (American: take max between payoff
and f)

Black—Scholes—Merton model

Black-Scholes equation + 0252 ZSZ + S— =rV

Black-Scholes formula: C(S;,t) = ®(d,)S, — ®(d,)Ke T,
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P(S,,t) = Ke T —S. 4+ C(S,, t) = ®(—d,)Ke T~ — d(—d,)S,

where d; =m/%[ln(%)+(r+%2)(T—t)],dz =d;—oJT -t

Implied volatility: the value of volatility when back-solving an option pricing model (such as BS)
with current market price
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1) Stochastic calculus

Brownian motion

Wiener process: W, is called a Wiener process if the following holds
Stationary increment: W, — W,~N(0,t — s)
Independent increment: Wy, — W, L W, — W,
Starts at zero: P(Wt(J = 0) =1

Properties:  Cov(W;, W) = min(s,t), [dW,]?> =dt (quadratic  variation),  nowhere
differentiable

Itd’s process: X, is an 1td’s process if it is solution to the following stochastic differential equation

{dXt = u(t, Xp)dt + a(t, X,)dW,
Xo=a

Where u(t, X;) is known as the drift function and o (¢t, X;) is known as the volatility function. You
may think dX; = X;, 5. — X; and dt = 6t (useful in simulation)

Stochastic integral

_— T _ _
Definition: fo f(s,W,)dwW, = 5(171520 Z?':(g) 1f(tj, W )(We,,, — W)

2
1té’s lemma: df (¢, X,) = [% + 1t X)L+ 20%(t,X,) %] dt + o (t,X) Ldw,

152
Geometric Brownian motion: dS; = rS,dt + 0S,dW, = S, = Soe(r 797 JeroWe

r—%dz)§t+dm2

Consequently, S;, s5; = Ste( where Z~N(0,1)

Finding stochastic integral: “guess” the function such that it will contain the integrand in its SDE.
Use Itd’s lemma to find SDE of the guess and then integrate both sides

Solving SDE: “guess” a solution and use It6’s lemma to verify that the solution satisfies the SDE
(the following table is borrowed from Prof. Yau Chun Yip’s notes on Stochastic Calculus)
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10
Name SDE Solution (X;)
Ornstein-Uhlenbeck(OU) process dX, = —oX,dt + odW, ce ™ | ge™™ [ e®dW,
Mean reverting QU dX; = (m— aX;)dt + odW, 23 (r_’ Ejg “ 1o, e aw,
Geometric Brownian motion dX; = aXidt + bXdW; cela— b [2EbW,
Brownian bridge dX, = bl "{'Jd; FdW, a(l 1)+ bt (1 f}ﬂj .-li'-i'::

dX, — (,/1 X2 —gx,) di /11 X2dW,

sinh(c -+t + W)

dX, = X, dt + X dW,

1

W
dX, = 1Xdt | /1 X}dW, sin(c + W)
dX, = — 7 Xedt + T dW, (c+W,)/(1+1)

dX, = rdt + aX,dW,

ce®Wimaat | i"_ﬂ;em:w' We)-30°(s) g

Integrating factor: add e to both sides of a SDE (target: cancel some terms)

Martingale property: E [fOTf(t, W) dw,

AR ICATAT A

In particular, E (fOTf(t, Wt)th) =0

[t6 isometry: E [(fon(t, Wt)th)Z] _ foT E[f(t,W,)?]dt

similarly, E [(f £t Wdw, ) (f; gt WdW,)| = [} ELf (e, W) g(t, Wpldt

Product rule: d(X,Y,) = X,dY, + Y, dX, + d[o(t, X, )W,, a(t,Y.)W,]
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IV) Simulation methods

Theoretical support

Sample mean: X, = Y, X;
Sample variance: S? = n—il X = X,)?

Law of large numbers (WLLN): Let X;, ..., X,, be i.i.d. random variables with mean 6 and variance
0?2, then for any givene > 0, P(|X,, — 0| >€) > 0asn - o

Central limit theorem (CLT, Lindeberg—Lévy): Let Xj, ..., X,, be i.i.d. random variables with mean

_ d 2
0 and finite variance g2, then X,, > N (9, %) asn — oo

Standard Monte Carlo

Idea: take average of independent replications/scenarios of the reality/future
Algorithm:

1) Generate random variable X;
2) Calculate h; = h(X;), where h is the target function
3) Repeat 1and 2 for n times

4) 6= %Z’}:l h; (remember to do discounting if necessary)

Inverse transform

Idea: if we know X~Fy (i.e. the cdf), we can generate X out of uniform random numbers
Algorithm (discrete):

1) Generate U~Uniform(0,1)

2) X=xif X p SU<ZLopi
Algorithm (continuous):

1) Generate U~Uniform(0,1)

2) X = F;y'(U) assuming the inverse exists
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Rejection sampling

Idea: if we can simulate Y ~Gy easily, we can use the proportional distribution (likelihood ratio)
as a basis to simulate X with pdf f(x)

Algorithm:

1) Findc= maX@
y 9

2) Generate Y; from a density g: U;~Uniform(0,1) = Y; = G"1(U,)
3) Generate U,~Uniform(0,1)

1 5
c gy

Number of iterations needed: N~Geo G) =>EN)=c

4) IfU, <

set X; =Y;, otherwise return to 2
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V) Variance reduction

Antithetic variables

Idea: if we are able to generate negatively correlated underlying random variables, the estimator
can have lower variance as compared with independent samples. This requires the target
function h(x) to be monotone

Algorithm:

1) Generate U~U(0,1)

2) Set X; = F71(U),Y; = F~1(1 —U) (note: want X, Y same distribution but negative
correlation)

3) Repeat 1and 2 for n times
4) 6= _-3r[h(X) +h(1)]
Useful corollary: if h(x) is monotone, then Cov(h(U), h(1 — U)) < 0 where U~U(0,1)

Stratified sampling

Idea: if we have information about grouping in the population, then we may use conditional
mean (mean of subgroup) as the sample from the population

Algorithm:

1) GenerateV;; = %(UL-J- +i—1)whereU; ;~U(0,1)fori=1,..,B;j =1,..,Ng
2) Set Xi,j = F_l(Vl',j)
3) = BxlNB Z?’fl[h(Xllj) + h(XZJ-) + -+ h(XBJ-)] (average over subsamples and bins,

remember to adjust for conditional probability)

Control variate

Idea: if we combine the estimate of our target unknown quantity with estimates of some known
guantities, we can exploit the known information

Algorithm:

1) Find puy for Y with a known distribution (or estimate py via pilot simulation)
2) Generate X;,Y;fori=1,..,n

3) Compute X, Y, 6yy, 62
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4) 6=X-21(7 - py)

%
Pilot simulation: we can run a simulation with small sample size (e.g. m = 100) and compute
Gyy, 0% and uy, = Y,, based on this pilot sample. Then we can use their values when we compute

0=2X,— %" (Y,, — py) for our target n samples

Properties of effective control: evaluable from simulation data, known mean and high correlation
with the simulation variable. Possible candidates are underlying random variable (e.g. uniform
when we use inverse transform) and martingale transform (will not be tested)

Importance sampling

Idea: if certain values of the simulation variable have more impact on the parameter of interest
(e.g. probability of a rare event), we can try to “emphasize” those values by sampling them more
frequently and reduce variance. This can be done by changing the probability measure using the
likelihood ratio (technically it is called Radon—Nikodym derivative) as weight

Algorithm:

1) Find the likelihood ratio ;E—g where f(x) is the original target pdf

2) Generate X;~Gfori=1,...,n

3) é — lzn h(Xi)f(Xi)

nS= g(xy)
Maximum principle: choose g such that both g(x) and h(x)f(x) take maximum values at the
samex = x*

Exponential tilting

e f(x)
Mx(t)
as choosing g in rejection sampling or importance sampling

Tilted density: f; (x) = where My (t) is the mgf of X. Useful for rare event simulation such

Choice of t for importance sampling: choose t such that the upper bound of h(;c)(’;;x) = h(xl'ff(t)
t

is minimized. In particular, we first find x = x; (subscript t because it may depend on t) such that

A@f(x) < h(xt)f*(xt) for all x in the support. Then we minimize —h(xt)f*(xt)
fr(x) fe(xf) fe(x)

with respectto t



