Summer 2020
Alternative version of Stolz–Cesàro theorem
Suppose that \(\{b_n\}\) is a sequence of strictly positive real numbers with \(b_0:=0\) and \(b_n \uparrow \infty\)
\(\{v_n\}\) is a convergent sequence of real numbers with \(v_n \rightarrow v_\infty \in \mathbb{R}\)
Then we have \(\lim_{n \rightarrow \infty} \frac{1}{b_n} \sum_{k=1}^n (b_k -b_{k-1}) v_k = v_\infty\)
Proof: let \(\epsilon > 0\). Choose \(N\) s.t. \(v_k > v_\infty -\epsilon\) whenever \(k \ge N\). Then \[ \begin{aligned} \liminf_{n \rightarrow \infty} \frac{1}{b_n} \sum_{k=1}^n (b_k -b_{k-1}) v_k &\ge \liminf_{n \rightarrow \infty} \left[ \frac{1}{b_n} \sum_{k=1}^N (b_k -b_{k-1}) v_k +\frac{b_n -b_N}{b_n} (v_\infty -\epsilon) \right] \\ &\ge 0 +v_\infty -\epsilon \end{aligned} \]
Since this is true for every \(\epsilon > 0\), we have \(\liminf \ge v_\infty\)
By a similar argument, we have \(\limsup \le v_\infty\) and the result follows
Suppose that \(\{b_n\}\) is a sequence of strictly positive real numbers with \(b_n \uparrow \infty\)
\(\{x_n\}\) is a sequence of real numbers and define \(s_n := \sum_{i=1}^n x_i\)
Then we have \(\sum \frac{x_n}{b_n}\) converges \(\implies \frac{s_n}{b_n} \rightarrow 0\)
Proof: let \(u_n := \sum_{k \le n} \frac{x_k}{b_k}\) so that \(u_\infty := \lim_{n \rightarrow \infty} u_n\) exists
Then \(u_n -u_{n-1} = \frac{x_n}{b_n}\). Thus by rearrangement \[ s_n = \sum_{k=1}^n b_k(u_k -u_{k-1}) = b_n u_n -\sum_{k=1}^n (b_k-b_{k-1}) u_{k-1} \]
Applying Cesàro’s lemma, we have \(\frac{s_n}{b_n} \rightarrow u_\infty -u_\infty = 0\)
Alternative version: \(\sum x_n\) exists and is finite \(\implies \lim_{n \rightarrow \infty} \frac{1}{b_n} \sum_{k=1}^n b_k x_k =0\)
Let \(X_1, X_2, \dots\) be iid RVs with \(E(|X_k|) < \infty, \forall k\). Define \(S_n := \sum_{k=1}^n X_k\) and \(\mu := E(X_k), \forall k\)
Then \(\frac{1}{n} S_n \stackrel{a.s.}{\rightarrow} \mu\)
Proof