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Background

After applying a treatment Wi ∈ {0, 1}, the outcome is Yi(Wi).
Causal effect: Y (1) − Y (0).

Fundamental problem
We can only observe one realization of W at a time, i.e.,

Causal effect = {
Y (1) − ??
?? − Y (0)

= ??.

Parameter of interest:

τAT E =
1
N

N

∑
i=1
(Yi(1) − Yi(0)).
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Assumption
Assumption 1.1. (Sampling Experiment)
The population consists of N units with potential values (Yi(0), Yi(1))Ni=1
which are i.i.d. draws from the distribution F01(y0, y1). The n observed
units are sampled at random and without replacement from the population,

Yi(0), Yi(1)⊥⊥ Ri

where we denote q ∶= n/N ∈ (0, 1].

Assumption 1.2. (Complete Randomization)
Treatment assignment is completely randomized, that is for each unit with
Ri = 1 we have

(Yi(0), Yi(1))⊥⊥Wi

where Wi = 1 for n1 units selected at random and without replacement
from the n observations with Ri = 1, and the propensity score p ∶= n1/n
satisfies 0 < p < 1.
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Source of Randomness

Sampling Uncertainty: uncertainty arised from R1, . . . , RN .
▸ captured by conventional standard error.
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Source of Randomness

Design Uncertainty: uncertainty arised from W1, . . . , WN .
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Notation

Population distribution (with size N) of potential outcomes:
F p

01(y0, y1) ∶= ∑
N
i=1 1{Yi(0) ≤ y0, Yi(1) ≤ y1}/N .

Sample distribution of size n:
F s

01(y0, y1) ∶= ∑
N
i=1 Ri1{Yi(0) ≤ y0, Yi(1) ≤ y1}/n.

Number of treated units in the sample: n1.
Number of control units in the sample: n0 = n − n1.
Empirical c.d.f. given the randomized treatment:

F̂0(y0) ∶=
1
n0

N

∑
i=1

Ri(1 −Wi)1{Yi(0) ≤ y0};

F̂1(y1) ∶=
1
n1

N

∑
i=1

RiWi1{Yi(1) ≤ y1}
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The True Variance of the Estimator for the Average
Treatment Effect

Denote

S2
0 =

1
N − 1

N

∑
i=1
(Yi(0) − Ȳ (0))2

S2
1 =

1
N − 1

N

∑
i=1
(Yi(1) − Ȳ (1))2

S2
01 =

1
N − 1

N

∑
i=1
(Yi(1) − Yi(0) − τAT E)

2

Then the exact variance of τ̂ is

Var(τ̂) = S2
0

n0
+

S2
1

n1
−

S2
01

N
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The True Variance of the Estimator for the Average
Treatment Effect

An analytical form of estimator can be

V̂ar(τ̂) = Ŝ2
0

n0
+

Ŝ2
1

n1
−

Ŝ2
01

N

where Ŝ2
j

nj
= 1

nj−1 ∑
N
i=1 Ri1(Wi = j)(Yi − Ȳj)

2 and Ŝ2
01

N is an estimator
of the sharp lower bound for S2

01.
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The Classical Bootstrap

Classical Bootstrap approximates the cumulative distribution FY W of
(Yi, Wi) by the empirical distribution

F̂Y W (w, y) =
1
n

N

∑
i=1

Ri1(Yi ≤ y, Wi ≤ w).

Remarks
In classical bootstrap, there is purely sampling uncertainty. It impute all
missing values in the population by replications.
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The Causal Bootstrap

Aim: Bootstrapping in a way that the uncertainty is solely
design-based uncertainty.
Idea: Modify the way how we impute the missing values from the
observed values. Note that the joint distribution of potential
outcomes in population is

F p
01(y0, y1) ∶=

1
N

N

∑
i=1

1{Yi(0) ≤ y0, Yi(1) ≤ y1} = C(F p
0 (y0), F p

1 (y1)),

where C ∶ [0, 1]2 ↦ [0, 1] is a non-decreasing copula function.
Hence our target τ can be written as a functional of the marginal
distributions, which can be estimated from a completely randomized
experiment. The resulting task is the choice of coupling C.
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Least Favorable Coupling for the Average Treatment
Effect
Assumption 2.1.
The first four moments of the respective marginal distributions of Yi(0)
and Yi(1) are bounded.

Proposition 2.1. (Least Favorable Coupling for the ATE)
Suppose that Assumption 2.1 holds. Then, given the marginal distributions
F0, F1, the variance bound is uniquely attained at

σ2
(F0, F1) ∶= lim

N
nVarF iso

01
(τ̂)

where F iso
01 ∶= Ciso(F0, F1) is the joint distribution corresponding to the

isotone coupling Ciso(u, v) =min(u, v).

Remarks
It attains the upper bound for the asymptotic variance.
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Generating the Empirical Population

1 Let Y 0
j , j = 1, . . . , n0 denotes the ordered sample of values with

Wi = 0, and Y 1
k , k = 1, . . . , n1 denotes the ordered sample with Wi = 1.

2 Let N0 = ⌈n0N/n⌉ and N1 = N −N0. Define

M ℓ
j ∶= ⌈

j

n0
Nℓ⌉ − ⌈

j − 1
n0

Nℓ⌉ , ℓ = 0, 1.

3 Generate the empirical population (Ỹi, W̃i)
N
i=1 by including M0

j copies
of Y 0

j with Wj = 0 and M1
j copies of Y 1

j with Wj = 1.
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Imputing Missing Counterfactuals

Impute the missing counterfactuals according to

Ỹi(0) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

Ỹi if W̃i = 0
F̂−1

0 (F̂1(Ỹi)) otherwise

Ỹi(1) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

Ỹi if W̃i = 1
F̂−1

1 (F̂0(Ỹi)) otherwise
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Resampling Algorithm

1 For bth bootstrap replication, draw n units of (Y ∗ib(0), Y ∗ib(1)) from
the empirical population at random and without replacement.

2 Generate W ∗
1b, . . . , W ∗

nb by selecting n1 units from the sample without
replacement and set W ∗

ib = 1 for the selected units, W ∗
ib = 0 otherwise.

Hence we have the bootstrap sample Y ∗ib = Y ∗ib(W
∗
ib) for i = 1, . . . , n.

3 Obtain the estimates and the studentized values

τ̂∗b =
1
n1

n

∑
i=1

W ∗
ibY
∗

ib −
1
n0

n

∑
i=1
(1 −W ∗

ib)Y
∗

ib ;

σ̂∗b = σ(F̂0b∗ , F̂ ∗1b);

T ∗b =
√

n
τ̂∗b − τ̂

σ̂∗b
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Bootstrap Algorithm

1 Create an empirical population (Ỹi, W̃i)
N
i=1 by selecting M0

j copies of
Yj with Wj = 0 and M1

j copies of Y 1
j with Wj = 1.

2 Impute potential values Ỹi(0), Ỹi(1) for each i = 1, . . . , N where
Ỹi(Wi) = Ỹi and Ỹi(1 −Wi) is obtained.

3 Simulate the randomized distribution by repeatedly drawing n units of
Y ∗i (0) and Y ∗i (1) out of that empirical population without
replacement and generating randomization draws W ∗

1 , . . . , W ∗
n by

setting W ∗
ib = 1 for n1 units sampled from {1, . . . , n} without

replacement, and W ∗
ib = 0 for the remaining n − n1 units. We then set

Y ∗ib ∶= Y ∗i (W
∗
ib).

4 Given (Y ∗ib , W ∗
ib), compute bootstrap version of the statistic T ∗b .
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Confidence Intervals

Bootstrap Studentized CI
The proposed confidence intervals for τ is

Ĉ1−α ∶= [τ̂ − σ̂ĉ1−α/
√

n, τ̂ − σ̂ĉα/
√

n],

where ĉp is the pth quantile of bootstrap samples T ∗1 , . . . , T ∗B.
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Basic designs

I. No treatment effect, same marginal distribution
▸ Yi(0) = Yi(1) ∼ N(0, 1) and n0 = n1 = 100.
▸ all procedures are expected to do well.

II. Random treatment effect, different marginal distribution
▸ Yi(0) ∼ N(0, 1), Yi(1) = 0 and n0 = n1 = 100.
▸ causal standard errors and causal bootstrap should do better.

III. Design II with smaller sample
▸ Yi(0) ∼ N(0, 1), Yi(1) = 0 and n0 = n1 = 20.

IV. Heterogeneous treatment effect, non-Gaussian distribution
▸ Yi(0) = AZ + (1 −A)4Z where A ∼ Bern(0.9) and Z ∼ N(0, 1).
▸ Yi(1) = 0 and n0 = n1 = 20.
▸ this highlights the difference between the bootstrap and Gaussian

inference.

Note
The average treatment effects in the simulations are all zero.
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Basic results

Figure 1: Adapted from Table 3 in the paper.

Note
The number of replications used in the bootstrap is not stated.
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Basic results

Figure 2: Adapted from Table 4 in the paper. Yi(1)’s are shifted by τn = 2/
√

n to
investigate local power. This was NOT included in the arXiv version (I got trapped).
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Coupled designs

V. Heterogeneous treatment effect, bivariate Gaussian distribution
▸ Var{Yi(0)} = 0.5 and Var{Yi(1)} = 2.
▸ different correlation coefficients ϱ01 and sample sizes (n0, n1).
▸ expect asymptotically exact coverage under isotonic coupling ϱ01 = 1.
▸ expect conservative coverage if ϱ01 < 1.
▸ expect Fisher’s exact procedure to underestimate the spread of the

randomization distribution.
▸ should not expect refinements for the bootstrap relative to Gaussian

inference.
VI. Heterogeneous treatment effect, bivariate non-Gaussian distribution

▸ Yi(0) = 0 (note that the potential outcomes differ from design IV).
▸ Yi(1) = AZ + (1 −A)4Z where A ∼ Bern(0.9) and Z ∼ N(0, 1).
▸ expect refinements for the bootstrap relative to Gaussian inference.
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Coupled results

Figure 3: Adapted from Table 5 in the paper.
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Coupled results

Figure 4: Adapted from Table 6 in the paper.

Ben and Heman A Causal Bootstrap Summer, 2021 22 / 33



Two-stage scheme of sampling

The causal bootstrap’s setting can be seen as a two-stage scheme of
sampling without replacement from nested finite populations:

1 Draw n units without replacement from the population of N units.
2 Draw n1 units at random and without replacement to receive the

treatment Wi = 1.
▸ the remaining n0 = n − n1 units are assigned Wi = 0.
▸ step 2 is conditionally independent of step 1.

This view allows us to characterize the asymptotic properties of the causal
bootstrap.

An asymptotic Donsker Theorem for empirical processes based on
sampling without replacement from a finite population is available
from Bickel (1969).
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Sampling uncertainty

Define the (joint) distributions of the functional:

F p
01(y0, y1) ∶=

1
N

N

∑
i=1

1{Yi(0) ≤ y0, Yi(1) ≤ y1},

F s
01(y0, y1) ∶=

1
n

N

∑
i=1

Ri1{Yi(0) ≤ y0, Yi(1) ≤ y1},

and similarly for the marginals F p
0 , F p

1 , F s
0 , F s

1 .
The sampling uncertainty can be characterized by:

F s
01(y0, y1) − F p

01(y0, y1) =
1
n

N

∑
i=1
(Ri − q)1{Yi(0) ≤ y0, Yi(1) ≤ y1}, (1)

where q = n/N .
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Design uncertainty
Define

F̂0(y0) ∶=
1

n(1 − p)

N

∑
i=1

Ri(1 −Wi)1{Yi(0) ≤ y0},

F̂1(y1) ∶=
1

np

N

∑
i=1

RiWi1{Yi(1) ≤ y1},

where p = n1/n; see Section 1.2.
The design uncertainty can be characterized by:

(
F̂0(y0) − F s

0 (y0)

F̂1(y1) − F s
1 (y1)

) =
1

np

N

∑
i=1

Ri(Wi − p)(
−p1{Yi(0) ≤ y0}/(1 − p)

1{Yi(1) ≤ y1}
). (2)

Note
The definitions of F̂0(y0) and F̂1(y1) are different in Sections 1.2 and 5
(probably typos).
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Consistency and randomization CLT
Consistency
Under regularity conditions, τ̂ and σ̂ are consistent for τ(F p

0 , F p
1 ) and

σ(F p
0 , F p

1 ), respectively.

The proof is based on the Glivenko-Cantelli theorem and continuous
mapping theorem.

Randomization CLT
Under regularity conditions,

√
n

τ̂ − τ

σ̂

d
→ N(0,

σ2(F p
01)

σ2(F p
0 , F p

1 )
) ,

where σ2(F01) ∶= limn→∞ nVarF01(τ̂)

The proof is based on Bickel (1969), the functional Delta method and
Slutsky’s theorem.
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Bootstrap CLT
Bootstrap CLT
Under regularity conditions,

√
n

τ̂∗ − τ̂

σ̂∗
d
→ N(0, 1).

The proof is similar to that of the randomization CLT.
The bootstrap CLT and randomization CLT together

show that the bootstrap algorithm in Section 3 converges to a
“least-favorable” limiting experiment in an appropriate sense because
the asymptotic variances are 1 and less than 1 by construction.
apply to any other functional that satisfy the regularity conditions.
achieves refinements with the t-ratio (self-normalization) under
slightly stronger conditions.

The CIs are asymptotically valid by replacing the unidentified
randomization variance with an estimate of the bound; see Corollary 5.1.
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Assumptions
When treatment is not completely randomized

Observable attributes: Xi.
Indicator if unit i is included in the sample sample: Ri.

▸ a random sample of size n ≤ N is observed (superpopulation model).

Unconfoundedness/ignorability
Treatment assignment is independent across units i = 1, . . . , n and strongly
ignorable given Xi, i.e., {Yi(0), Yi(1)} ⊥⊥Wi ∣ {Xi, Ri}.

Under unconfoundedness and independent assignment, the assignment
mechanism for a binary treatment is fully described by the propensity score

e(x) ∶= P(Wi = 1 ∣Xi = x).

This paper focuses on the case that e(x) is known, but it is possible to
extend when e(x) has to be estimated.
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Assumptions

Overlap
The propensity score satisfies 0 < e ≤ e(x) ≤ e < 1 for all values of x in the
support of Xi.

Note
Clearly, overlap assumption is violated if the events are rare.

Given these assumption, a natural estimator for τAT E is

τ̂AT E ∶=
1
n

n

∑
i=1
{

WiYi

e(Xi)
−
(1 −Wi)Yi

1 − e(Xi)
} .
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Assumptions

Superpopulation
For each unit i = 1, . . . , N in the population, attributes Xi are i.i.d. draws
from the distribution FX(x), and potential values of Yi(0), Yi(1) are
independent draws from the distribution F01(y0, y1 ∣ x). FX and F01 have
bounded p.d.f.s fX(x) and f01(y0, y1 ∣ x), respectively, that are twice
continuously differentiable in the continuously distributed components of x.

Note
"Yi(0), Yi(0) are independent..." is probably a typo.

This assumption is necessary as
the quality of asymptotic approximations depends on properties of
that underlying meta-population; and
it permits consistent estimation of conditional distributions.
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Balancing Score

Nonparametric estimation may suffer from a curse of dimensionality in the
number of attributes. This paper therefore considers

F̂0n(y0, b) ∶=
1
n

n

∑
i=1

(1 −Wi)1{Yi ≤ y0, b(Xi) ≤ b}

1 − e(Xi)
,

F̂1n(y1, b) ∶=
1
n

n

∑
i=1

Wi1{Yi ≤ y0, b(Xi) ≤ b}

e(Xi)
,

where b(x) is a balancing score, i.e., a basis for incorporating the
attributes.
Note
Balancing score is a standard tool in propensity score matching; see
Wikipedia.
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Bootstrap Algorithm

The algorithm when treatment is not completely randomized is
1 Impute missing counterfactuals.

i. obtain the empirical conditional rank by V̂i ∶= F̂Wi(Yi ∣ b(Xi)).
ii. impute the values by ŶWii ∶= Yi and Ŷ(1−Wi)i ∶= F̂ −1

(1−Wi)
(V̂i ∣ b(Xi)).

☀ note that this coupling preserves the estimated conditional distribution
possibly up to a discretization error.

2 Estimate the randomization distribution of τ̂AT E .
i. for the b-th bootstrap sample, draw W ∗

1b, . . . , W ∗

nb ∼ Bern(e(Xi))

independently.
ii. Compute the treatment contrast

τ̂∗b ∶=
1
n

n

∑
i=1
{

W ∗

ibŶ1i

e(Xi)
−
(1 −W ∗

ib)Ŷ0i

1 − e(Xi)
} .

iii. for B independent replications, use the empirical distribution of
τ̂∗1 , . . . , τ̂∗B as the bootstrap estimator for the randomization
distribution of τ̂ .
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Conclusion

Statistical error may come from different sources.
▸ causal inference need to deal with sampling and design uncertainty.

Causal inference should be based on conservative estimation.
▸ the joint distribution of potential values is fundamentally

underidentified.
Causal bootstrap

▸ base on least favorable randomization distribution.
▸ able to handle both sampling and design uncertainty.
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