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Introduction

SECTION 1



Time-average variance constant
(p-1)

Let {X;};c7z be a stationary and ergodic process with mean u = E(X,) and finite variance
> Denote covariance function by y, = Cov(X,y, X)) Vk € Z

= 1
Sample mean: X, = — X

_ d
> Asymptotic normality under suitable conditions: vn(X,, — u) - N(0,0?)

o g2 here is called the time-average variance constant (TAVC) or long-run variance

> Note that Var(X;) = y, # o2 in time series setting

Estimation of o2 is important for inference of time series

o Representation under suitable conditions: 62 = Y.z V&

o Check previous reading group meeting (slide p.20, also check Keith’s note) for the conditions




Overlapping batch means (p.2)

2
Overlapping batch means (OBM): 62,,,,(n) —l—"Z;:i"“( Z]H" X, - X )

n—l,+1
o First proposed by Meketon and Schmeiser (1984)
o Closely related to lag window estimator using Bartlett kernel (Newey & West, 1987)

° Anillustration assuming u = 0
o Same AMSE if bandwidth [,, are both chosen optimally
o Nonoverlapping (NBM) version is also possible, but with worse properties
o Song (2018) suggested an optimal linear combination of OBM and NBM would be better than solely using OBM

o | discussed with Keith and we thought that her evidence was not solid enough (e.g. no theoretical properties shown)




Recursive estimation

. > n-1 s 1
Recursive formula for sample mean: X,, = TXn—1 + ;Xn

’ 151%—1 + ;(Xn _ Xn—l)z

Recursive formula for sample variance: S2 = —

o This is Welford’s (1962) online algorithm

Recursive formula for TAVC: did not exist
o Note that 6%,,,,(n) has both 0(n) computational and memory complexity
o When [, # l,,_4, all batch means need to be updated

o However it is important for
o Convergence diagnostics of MCMC

o Sequential monitoring and testing




Notations (p.3)

1
LP norm: [|X],, & (E|X[P)?, X € LPif [|IX]|, < oo
° Write [|X]| = [IX1]

Same order: a,, ~ b, if lim In — 1

n—-0oo bn

an

< cforalllarge n

° a, = b, ifdc > Osuchthat%S

n

Let S, = X7y X; —npand Sy = max|S;|




Recursive TAVC
estimates

SECTION 2



Algorithm when u = 0

Start of each block: {ay },ey IS a strictly increasing integer sequence such that
caqi=1land a1 —ay > ©ask -

o Start of each batch: t; = a, ifa, < i < ag4q

Component: V, = Y-, W/ where W; = Xy, 4 X 41 + - + X;
° Up = Z?:lli where li =1 — t; + 1
o Observe that W; is the batch sum and [; is the batch size

Algorithm: at stage n, we store (n, ky, ay,, vy, Vo, Wy, ). At stage n + 1,
cIfn+1=ag 4q,8etkpyq1 = kp + 1and Wy = Xppyq. Otherwise set k= kyyand Wy = Wy + X 4q
o Set Vi =V + W2 and v, = vy, + (n + 2 — akn+1) since tp41 = Ak, ,

o The estimate is 6fz(n + 1) = i1

Un+1




Graphical illustration (Chan and
Yau, 2017)
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Choice of a;, and t,, (p.3-4)

A simple choice is a; = |ckP| where ¢ > 0 and p > 1 are constants
o Optimal choice of functional is not known

o | discussed with Keith and we need to resort to variational calculus for this problem

o However it seems to be unsolvable without proper boundary conditions (tried on SymPy)

Note that t,, is implicitly determined by choice of a;
o Since a; < n < ay4q, choosing a, = |ckP| meansckP —1<n<c(k+ 1P -1
o Solving k = k,, from the above inequalities, we have

1
° tp, = ai, Where k,, = [(n—ﬂ)pl —1

c




Modification when u # 0 (p.4-5)

General component: 1, = Y- (W;)? where W = X;, + X;. 41 + -+ X; — LiXy,
o Observe that (W/)? = W? — 2L;W; X,, + (1;X,,)?
° Let Uy, = Xio, iW; and g, = Xi-4 li2
o Note that they can also be updated recursively
o Then V] =V, — 2U, X, + ¢, (X,)? and 6xsp(n) = “n

Un

o Complete algorithm is similar to previous logic so we skip it here

Generalization to spectral density estimation is possible
o Relation between spectral density and TAVC was discussed in previous reading group (slide p.47)




Convergence
properties

SECTION 3



Representation of TAVC (p.5-6)

Consider Wu’s (2005) nonlinear Wold process

o Weak stability with p = 2 (i.e. (1, < o) guarantees invariance principle, which entails CLT

Representation of TAVC
o Assume E(X;) = 0and X.;2,l|PoX;|l, < oo where P; .= E(- |F;) — E(- |Fi_1)

o The later assumption is equivalent to (0, < oo (which suggest short-range dependence)

o

Then D, & ¥ P, X; € L? and is a stationary martingale difference sequence w.r.t. Fy

o Proved in previous reading group (slide p.21)

[e]

By theorem 1 in Hannan (1979), we have invariance principle and o = || Di]|,

o Why not ||Dy||,? Because they have same distribution by stationarity and we cannot observe X, in practice
_\m _\n

Let Sn = li=1 Xi and Mn = Zi=1 Di

If O, < oo fora > 2, then ||S,, — M|l = o(n)

o This partly comes from moment inequality. See previous reading group (slide p.20)

[e]

[e]




Moment
convergence

SECTION 3.1




Moment convergence (p.6-7)

Theorem 1: let E(X;) = 0 and X; € L% where a > 2
° Assume X2, | PoXillq < oo
> Equivalent to Q, < oo, which is mild as o2 does not always exist for long-range dependent processes

(am+1_am)2 N O
;(nzz(ak_ak—l)z

o Earlier condition a,,4+1 — a,, — 0 is needed to account for dependence

o Further assume as m - o, a,,41 — a;; = % and

o Later condition is needed so that a,, does not diverge to co so fast

o Then |g = o0(1)

2

V
Yo _ ;2
(%

n

> This implies finite forth moment is not necessary for consistency of 65z (n) (e.g. take a = 3)

a
o Convergence in Lz norm where a > 2 implies convergence in probability (i.e. consistency)
!/

V.
_n_O-Z
Un

Corollary 1: under same assumptions of theorem 1, we also have

=o0(1)

NIR




Proof of theorem 1: blocking (p.13)

Blocking: for n € N choose m = m,, € Nsuchthata,, <n<a;;;+q
o m represent total number of complete blocks

. i—1 . .
o Then v, = Z?:l(] — 4t 1) =31, Z?=ai_1(1 — 4t 1)+ Z}Lam(j —t; + 1)
1 1
o =-Xiz(a; —ai-)(a; —ai + D+ —ap)(n —ay + 1)

o ~ %Z}Zz(ai — a;_1)? by assumption of theorem 1

.. v . v .
Note that 1 < liminf—" < limsup—2**since v, . = v, (?)
m-—oo Vg, m—oc Yam m+
: (@m+1—am)? : Yam+1
o By assumin - 0, limsup——*+ =1
y g Z;(nzz(ak_ak—l)z m—>oop Vam

o Hence both limits are 1




Proof of theorem 1:
martingale approximation (p.13)

For any fixed k, € N, since a,,.1 — a,, IS increasing to o, we have
o lim =Y I —t; +1<ky) < lim —mky =0
m-—oo Un m—oo Un

o Using (m + 1)k, is better (?)

Martingale approximation: X.;2 || PoX;ll < oo implies Dy, = X2, PrX; € L
o Let M,, = Y1 D;. By theorem 1 in Wu (2007), the above condition also implies
° ISplle = 0(Wn), [IMyll = 0(¥n) and ||S,, — My |l = o(¥n)

* Hence as . o, py & LIIS7 — Mille < 1115y = MallalISy + Mylle = 0
> Inequality by Cauchy-Schwarz: ||(S, — My)(S,, + Mn)llg < ISn = Mpllo 1S + Myllq

o Aim to approximate V, by Q,, = YI*, R? where R; = D¢, + Dyyq + -+ + D;

o Such that ||Q,, — V||« = o(v,,) and show that
2

oo, -
o C g—o(l)
2




Proof of theorem 1: ||Q,, — V||l = o(v},) (p.13)
2

limsup— |, — @yl < limsup—37L,||R? — W?||« (by Minkowski inequality)
2 n 2

n—oo Un n—oo

o < limsup— 71 (i — t; + 1)p;—¢+1 (by definition of p,, and stationarity)
n—oo n
; 1 . . 1 ]
° S HMSUp ==Y <icpii—t 15k (E = ti + Dpimgeq (Oy Tim =30 10 —t; + 1 < ko) = 0)

n-ooo “n Un

o < sup pg (by X — t; + 1)pj_¢01 < sup p 2 — ¢ + 1))
k>k, k=k,

o = 0 (by p, = 0asn — o)




Un

Proof of theorem 1: || — 42 ~=0(1) (p-14)
2

Recall that ti = Ay if ag <i < Ar+1 — 1

o Block square of sum: Y, = z“k“ Y(Dy, + Dypq + -+ D; ) o™ 1(Dak + Dg, 41+ -+ D )

o

Block sum of square: ¥, = Y%+~ 1(D Dz 41+ -+ D?)

(e]

| Yille < Za"“ ! || (Dak + Dgy 41+ -+ D; ) ., (by Minkowski inequality)
2

2

o

e 1”Dak + Dgyyq + e + Di”i

l=ay

[e]

< Z?"Z;_l c, (i — ag + 1)||D4|4 where ¢, is a constant which only depends on «

o By Burkholder’s inequality and L% stationarity. See previous reading group (slide p. 21-22)
o -1,. . .. . . .
On the other hand, ||Yk||g < Z?jg; (i — ai + DI|ID1113 (by Minkowski inequality and L% stationarity)
2

[e]




Q
_n_O.Z
Un

Prootf of theorem 1:

=0(1) (p.14-195)

a
2

Since 1 <~ < 2and Y — E(Y;|%,, ) is a MDS, we have
o |t seems this impose a < 4 on theorem 1
o 1=y [V — E(Yie Fu)IIZ < co ZitallVi — E(Yie|Fa, ) |12 (by Burkholder's inequality)
2 2

o < ¢y, 271?=1||Yk||§ (by Jensen’s inequality, c, actually changes)
2

a o«
° Similarly, ”271?:1[716 ~ E(Yk|Tak)]”%£ S Cq 7I;'AL=1||Yk”é
2 2

Note that D; are also MDS and E(¥,|%,, ) = E(Yx|F,,)

- Difference between Y, and Y, lies in the cross terms, e.g. Dg, Dg, 11

o However by property of MDS, E(DakDak+1) =0




Proof of theorem 1: % —o?||, =0(1) (p-15)
; 2
Note that [[XFL, (Vi — Yk)” = || ZR=[Ye = E(Yk|Tak)+E(Yk|Tak)]”

o We do not work on cross-term dlrectly with Minkowski directly as the bound is looser

a a
o K Ym . (IIYkllé + ||17k||§> (by Minkowski and inequalities proved in last slide)
2 2

o < ¢ lID11IG YR [Zak+1_1(l a + 1)]5 (by inequalities proved in two slides ago)

< cqlIDyllg max | 27N - ay + 1)] 2T - ag + 1)

l=ag

> Recall that v, = Y7L [Zak+1_1(1—ak+1)] by blocking

l=ay




Q
_n_O.Z
Un

Proof of theorem 1:

. = o) (p.15)

2 - -1
Now v, ||z 1(Yk Yk)||§gvn callDlllamax[ il — gy + D
2

> By 1 < liminf—=% < limsup%m—Jr1 =1

m—oo Vg, m—-oo Vam

1
( ) _
o < Ca”Dl”a [ﬂ% Ah+170h ] N O (by (am+1 am)z N 0)

Un Z;(nzz(ak_ak—l)z

Ergodic theorem: since DZ € L7, we have |DZ + -+ D} — 12|l = o(1)
2
> Therefore ||V, — E(Yk)”g = o[(ay41 — a)?]

° Recall that 7, = X%41" "(D2, + D2 41 + -+ D?). The sum is a isosceles triangular shaped

o Then lim —||Zk 1[Yk E(Yk)]”g = lim — Zk 1ol(agsr —ap)?l =

n—oo Un n—oo Un

o By Minkowski inequality and property of little o




Q
_n_O.Z
Un

Proof of theorem 1:

. = o) (p.15)

Since — ||Z (7 — Yk)”g >0 X, (v - Yk)”g = o(wy,) (first part in last slide)

o And lim — ||¥™,[7; E(Yk)]”a =0 ||Xm, [V E(Yk)]”a: = o(v,,) (second part in last slide)

n—oo Vn

o We have ||X7 [V, E(Yk)]”_ = || Xk=1[Y% E(Yk)]H (by E(Yk|‘7:ak) E(Yi|Fa))

= ||Zm, Vi — vy, 02|e = o(vam) (by ergodic theorem)
2

Finally we compare @, and Qq_,,—1 = >y
1
Qn = Qapys-1lle = 12 R2|| (recall R; = D¢, + Dy4q + ++ + D;)
2

l1=n+1

o < YOI R |12 (by Minkowski inequality)

° = qunﬂ_lO(i —t;+1) < (ams1 — am)z = o(vy) ( byz(amﬂ am)? 5 0)

I=n+1 mz(ak Aj— )2




Proot of corollary 1: requirement (p.195)

Note that V;,, remains unchanged if X; is replaced by X; — u
> Hence we can assume u = 0 wlog
o By V) =V, —2U,X,, + q,,(X,,)? and theorem 1, it suffices to verify
> UnXnllz = o(vy) and

° ”Cln()?n)zllg = o(v,)

_ 1
By moment inequality, IS, ||, = 0(y7) = 1%, |l = 0(n"2)




Proof of corollary 1: ||g,,(X,)?ll« = 0o(v,) (p.16)
2

Choose m € N such that a,;, < n < a,,+1, we have

(@m+1—am)?
° (Clm+1 - am)z = 0(1) Z;cn=2(ak T ak—l)2 (by Z;anz(;i_ak_l)z - O)

o < o(D[XEM,(ay — ax—1)]? = o(a?) (by ay is positive and telescoping sum)

Since a,, — o and is increasing, rlnax(alﬂ —a;) = o(a,,) = o(n) (by result of the above)
=m

o Recallthat q, = ¥* ,I? and v, = ¥, I;, we have

° qn < vy rlnax(alﬂ — a;) (by blocking)
=m

o = vyo(n)

Hence ||g,,(X,)?|le = v,0(n)0(n™Y) = o(v,)

> 0(a,)0(b,) = o(a,by) (little o times big O is little o)




Proof of corollary 1: ||U,X,|le = o(v,,) (p.16)
2

If |Uplle = O(DXM, (a141 — a;)°, then we have
o |UXplle < U, N1X, ], (by Cauchy-Schwarz inequality)
2

1
o = O(n_E)\/Z{’;l(aHl — a;)° (by moment inequality)

° = 0(7’1_%)[2?;1(%“ — al)z]\/rlré%i((aHl —ap) (by X124 (ap1 — a)* < [X2 (a1 — a)?1?)

o = O(n_%)o(ng)[Zﬂl(aHl — a;)?] (by r{é«%{(alﬂ —a;) = o(n))

o = 0(n"2)o(n2)o(v,,) (by blocking)
o = 0(vy) (little o times big O is little o)

Now we only need to prove ||U,|l, = 0(1)\/Zfﬁl(az+1 —ap)®




Proof of corollary 1: ||U,X,|le = o(v,,) (p.16)
2

Recall [; =i —t; + 1and U, = Xi_; [;W; where W; = X + X; 41 + -+ X;
o Leth; =hi, =Y LI <j<D), j=1,..,n
o Then Uy = X1y i X4y Xj = Xjoq Xjh
° Since X; = Y=o Pj—kXj and P;_xX; is MDS, we have
o WUnlle < Eeol| 1 PioiXih || (by Minkowski inequality)

o < Ype OCa\/Z _1 | Pj—kXjh; |2 (by Burkholder’s inequality, not trivial?)

° =cq |XT1h 2 3 ollPoXkll . (by L& stationarity)

~1 -1
° By blocking, Zn 1 hf < k- 125%; hz 12‘4;”(2( (Ar+1 — ap)* = Yi=1(Aps1 — ak)s

o Hence ||Upllg = O(DVE™  (ars1 — ax)® (by D2 ollPoXille < o)




Proof of moment convergence:
summary of techniques

Begin with martingale approximation
o Cater for dependence in time series

> Projection decomposition available as MDS (X; = Y3 Pj—X;)
o Enable the use of ergodic theorem for moment convergence
o WLLN under dependence. Check theorem 7.12 and 7.21 in Keith’s STAT4010

» Handle approximation difference with norm and little o (e.g. Y}, and Y})

o MDS is uncorrelated

Handle remainder term (e.g. I}, vs Vam)

o By blocking and assumption on growth rate of start of block a,,
o Suitable for subsampling or even general time series (e.g. m-dependent)

> Allow sharper bound to be derived. See proof related to || X7, (Y, — ¥;)||a- Also check lemma 1 in Liu and Wu (2010)
2

o Bounding a weighted sum, which may be useful for say SLLN. See proof related to U,,. Also check Kronecker's lemma




Convergence
rate, 2 < a < 4

SECTION 3.2.1




Convergence rate (p.8)

Theorem 2: let a, = |ckP|,k = 1 where ¢ > 0 and p > 1 are constants

Theorem 2.1: assume that X; € L%, E(X;) = 0 and A, = .72, 6,(j) < oo for some a € (2,4]

3 3 2

o Then ||V, — E(V,)|la = 0(nz"2*a)
2

Theorem 2.2: assume that X; € L%, E(X;) = 0 and A, = X724 (j) < oo for some a > 4
3

o i IVa—EWVa)ll _ O.szcﬁ
Then Al_zrc}o nz_% = s
Theorem 2.3:if X; € L2, E(X;) = 0 and %72 j%w(j) < oo for some q € (0,1]
1+(1—q)(1_%)]

o Then E(V,, — v,0°) = oln
> Consequently, if theorem 2.1 also holds, then ||V, — v,,6%|l« = 0(n?)
2

3 3 2 1
0 ¢_max[5—5+;,1+(1—q)(1—;)]
° X721j%84(j) < oo is sufficient




Optimal convergence rate (p.8)

, . L 3 3 2
To achieve optimal convergence, we should minimize ¢ = max [E 2 + = 1+(1—q) (1 — %)]
o Theorem 2 guides us to choose p based on g (dependence condition) and a (moment condition)

33,42 1+(1—q)(1—%)

o A good p should minimize n2 2r «a+n , which also minimize ¢

3 3 2 1
o Set=——+=-=1+(1-¢q) (1 ——) and solve for p
2 2p a p
o The rationale is that the optimal rate should be the same regardless of conditions which are hard to verify?

1
2

> We have p = T2 (denominator should be g — % + % probably typo in the paper)
2%
: q V. 21 1
Corollary 2: Letp = -2 Tz Under conditions of theorem 2, v—" — g2 L= O(na 2 2p
=37 n Py
: o _ 3 Vn | ( _l)
o In particular, if « = 4and g = 1,thenp —Eand -0 || =0\n 3
n 2




Convergence rate when u # 0 (p.9)

1

Note that v, ~ vg,, ~ > X, (a; — a;_1)? (by blocking)

° ~ -Zl= C p 2i2P=2 (py considering the differential a; — aj_1 ~ cpip‘l)

c2p2m?2p-1
° ~ a2 (by approximating sum 2L, with mtegralf dx)
= 1
il 2__ O(n (byn ~cmP =>m ~ (2)”)
4p—2 c
. A 1 , ( —1) 1 2 1 1
Corollary 2 also applies to = since — ||V}, = V,/|la = 0\n »Jand —=<=—-=——
Un Un 2 p a 2 2p

o This implies the difference V,, — V,, cannot be the dominating term

o See remark 4 in paper for proof ofvi WV, — V||«
n 2




Proof of theorem 2.1: :

33,2
1V, — E@lle = 0l 2%e) (p.17-18)
2

Recall V, = ¥, W2, Note that ||V}, — E(Vn)llg < [|1Xi, Wf“% (V, is non-negative)
o = [|Zi o Pk W |« (oy W = o Piic W)
o < Z,?=0||Z?=1?i_kWi2||% (by Minkowski inequality)
> It suffices to find the order of ||Z’i"=1?i_kWi2||%
Blocking: let b, = |(1 + ¢)p2PmP~1|
o [tcan beshownthati —t; <amy1 —1—ay, < by, VM EN

> Obviously the functional of b,,, is chosen by solving this inequality

o This also means that b,, is the bound of block size and batch size

2b, —1
° YieollXies PiciWiille = Xiiop X7y PiciWila + X 2o 17y PiicWilla
2 2 2




Proof of theorem 2.1:
bound of ||, kWZH (p.17)

Recall that W; = X¢, + Xy 41 + -+ X Let W = X¢ + X{ 1 + -+ X; (coupled batch sum)
o Since €y L €;, i € Z, we have E(X;|F_1) = E(X]|F_-1) = E(X]|F,)
Stability assumption A, < oo implies weak stability ©, < o

(e]

o

By theorem 1 in Wu (2007), [|W;ll4 < c404+/0 — t; + 1 (moment inequality)
Now ||730Wi2||g = ||[E(W2|F,) — E(Wi2|f_1)||g (definition of projection)

(e]

(e]

= ”E(W2|T0) E[(W; )ZITO]H (property of coupled batch sum)

[e]

< |W? — (W;)?||« (by Jensen’s inequality and tower property)
2

[e]

< [W; + W[ lIW; — Wl (by Cauchy-Schwarz inequality)

[e]

< 2||Wi||a2§-=ti 5, (j) (property of coupled batch sum and definition of physical dependence)

o

< 2¢,0,4Ji—t;+ 1 3=ti 5,(j) (by moment inequality)




Proof of theorem 2.1: .
bound of HZ?zl?i_le-ZHg (p.17)
2

Similarly for k = 0, || P Wi ||a < 2¢400+/i — t; + 1X5;, 80 (k + t; — )
2
> Note that P;_, W?,i € Z form MDS, so ||Z7%, P;_ . W?||3
2

[24
° < o ity ||Pi—rWi2||Z (by Burkholder’s inequality)
2

a

° <@ Yy [i—ti + 11X, Sa(k + t; — N]? (by moment inequality)




Proof of theorem 2.1: :

3 3
1V, — EQ)lle = 0(nz27%) (p.18)
2

Consider first term from blocking Y 5 IX ™, ?i_kWiZII%, Yeeap, IMieq Pi_le-ZII%

2

<0(1) Z,‘f=2bm{ r [w/i —t;+1 Z?’:"O 5, (k —j)]E} (by moment inequality in last slide)

o The summation index can be change sincei —t; < b,, andk — b, > 0

(e]

o

2
< 0(1) [Z}Ll(i —t; + 1)1]“2,‘?:2% Z?;”O 5,(k — j) (by independence of summation index)

o The inequality sign in this step should be equal?

2 1
= 0 (1802, 0(bu) (by i — £, < by aNd Ay = 524 6,(1) < 0

[e]

3
o =0 (nébfn)
2 3 3 1 1
o = olna2 72 (since b, = 0(me) = 0(n' )




Proof of theorem 2.31: .
IV — EQ)lle = 0(n272"%) (p.18)
2

Consider second term from blocking, Zii IIZ kWZHa

o < 0(1) [Z” (i—t+1) ] Zme_l t; Oa (k +t; — j) (same steps as last slide)

2
[Zl -t + 1)1]“ 0(b,,) (use big O because summation index cannot be changed)
°o = O(nfl+2 2p) (same steps as last slide)

233 2,3 .3

Hence Yol X Pi_ i Wf ||a = o(na 2 "2) +0(na 2 ZP

233 233

o = O(na 2 219) + O(na 2 ZP) (little o implies big O)

— O(na 2 2p




Prooft of theorem 2.1:
summary of techniques

Asymptotic approximation
o Approximate finite difference and sum by differential and integral

o Be aware of the definition of Riemann sum (e.g. you may need to perform change of variable)
o |dentify the dominating term
o Blocking: relate number of blocks m with sample size n

Handle multiple sum
o By blocking and bounding each block size

o Terms in a double sum may becomes independent. See last two slides

o Break down power into product with maximum

o Eg Y tP < (max t) yr o tpt

1<tsn




Convergence
rate, a > 4

SECTION 3.2.2




3

. Vo—E(W)Il  o?p?c?P
Proof of theorem 2.2: lim 1/ (3") =2F
n-oo 2= J12p—9

(p.20)

Notice that the condition changes from A, < oo for some a € (2,4] (T2.1) to a > 4 (T2.2)
o But the convergence rate issame fora = 4 (T2.1)and a > 4 (12.2)

o This means stronger moment conditions cannot give faster convergence rate. See moment inequality (previous slide p.20)

o Theorem 2.2 gives a close form of asymptotic MSE (AMSE) though

o ||V, —E(W)| = \/E|Vn — E(;,)|?, which can give us MSE after some modifications

o Proof of T2.2 requires the use of lemma 1, which we shall prove later

Lemma 1: assume X; € L%, E(X; = 0) and A, < oo for @ > 4 (conditions of T2.2)
o LetS; = §-=1Xj (the subscript should be j, probably typo in the paper)

> Then [|Zics[E(SE[F1) — E(SP)]l| = o)

> We also have lh_)rgloli4 Iz ,[s2 - E(sD)]|| = ia“




3

. NWV=E@WIl  o?p?c?P
Proof of theorem 2.2: lim — (3") =2F
n-oo 2= J12p—9

(p.18)

Let block sum of square Gy+1 = Zf’h;l ! W (target is Voo, = 2h=1Gh+1)

o |t differs from Yk in the sense that martingale approximation is not used
|Grs1 = E(GraaFar)|* = 3 0

Since Gy — E(Gnsa|Fa,) is MDS Wit F, . we have ||z;73=1[0h+1 — E(Graa|F )N

o

By lemma 1, }11_{1{)10 (ah+1 -

(e]

o

=Y E|Grys — E(Gh+1|7-"ah)|2 (MDS is uncorrelated)

1
~ 504 Yhe1(ansr — ap)®* (by lemma 1)

[e]

[e]

~ —04 ym  c*p*h*P~* (by considering the differential a, — a,_,; ~ cph?™1)

4 .4

o ~ 3(2;_3) m*=35* (by approximating sum X%, with integral [ dx)
= 1
4 I f—
0 ~ p~cP n4' (byn ~ Cmp = m ~ (2)17)
12p—9 ;




— 2..2.2D
Proof of theorem 2.2: lim 122 E(Z")” il

Nn— oo nz_ﬁ 12p—

Similarly, | Zhtq|E(Gra|Fay) — E(Gh+1|‘7:ah I
= Y E|E(Ghi1|Fay) — E(Gh+1|:7-"ah_1)| (MDS is uncorrelated)
o < YL E|E(Ghia|Fay,) — E(Ghﬂ)|2 (by towering and Eve’s law)

=Y ol(apse1 — ah) = o(n r) (by lemma 1 and result in last slide)

Now deal with E,, & Y7 [E(Gp41|Fay_,) — E(Ghyd)]

> The goal of :m is to connect everything for ||Yh=1[Gh+1 — E(Gri)]Il = ||Vam - E(Vam)H
Fay_ 1) E(Wz) Yk=oPi- kE(W2|Ta )for ap <1< ap4q
o This follows from definition of projection and tower property

> We have ||Z,]] < ¥, |221=12f‘f+1‘1?i_k5(w-2|:ra . )|| (by Minkowski inequality)

l=ap

(@)

°© = Yk= 0\/2 ah+1_1E|73l kE(WE|Fa, _ 1)| (by linearity of expectation and property of MDS)




. |Vp—EWV, o2p?c?P
Proof of theorem 2.2: lim 22 (3")” =27
n-oow 2—5p J12p—9

0, i—k>ah_1

Observe that fPi—kE(Wi2|?ah—1) ~ P, WE i—k <ap_q
l— L — -

(by property of projection)

o Hence Yp_zp \/Z’ﬁil Z?ﬁ:{{l E|Pik E(W?|Fay_,) |2

—_ 2 . . (00)
° < 0(1) Xktap,, \/Z}"{;l Z?ﬁ;; (-t + 1) [Z?’;’O 54(1')] (mimic proof of Yo, 127y :Pi—kWiZH%)

1 1 _3
o = () (nﬁbfn) O(bm) = O(le 219) (mimic proof of Z]io=2bm”2?=1 :Pi_kWiZH%C)




3

. |Vp—EWV, o2p?c?P
Proof of theorem 2.2: lim 22 (3")” =27
n-oow 2—5p J12p—9

(p.19)

Now consider Yaom~ \/ZZ” L D . E|?i—kE(Wi2|Tah_1)|2

> <0(1) Xieap,, \/Z 12?";}1_1( ti + DX, l64(])] 1(i — k < aj_q1) (mimic proof of ||P;_ W)
2

= 0(1) Xx=2p,, \/Z}’{‘ 12“’”1_1( — t; + 1)A%(ay, — ap—1) (by definition of stability, not multiply!)

° = 0(1) Xk=2p,, JZT=1(ah+1 — ap)?A%(ap — ap—1) (by blocking)

o = 0(1) Xiz2p,, v 2he1(an1 — an)?0(1) (by Ai(ap — ap—1) = 0 @s ap — ap_q = ©)
o = 0(1) 2izpy v 2ner 0(hZP72) (by ap — ap_y = O(KP™H))

| =

o =0 (bmmp_%) = O(le_%) (by by, = O(nl_%) and m ~ (%)p)




3

. |Vp—EWV, o2p?c?P
Proof of theorem 2.2: lim 22 (3")” =27
n-oow 2—5p J12p—9

(p.19)

3

m (Gpo1—E(Gpit|F 2
We have proved lim ||Zh—1[Gh+1 E(3h+1| ah)]“ — o\-/zijC_ZZ (four slides ago)

—00 2———
n T

nealGret = E(Graa|Fa)]|| = 1Z7ealGras — EGra DN = IVa,,.,, — E(Va,, )|l (last three slides)
> It remains to show that ||Va,,,, = E(Vay.) || = Ve = E(V)I

(¢]

> Now consider the remainder term ||+ (w2 — E(W2)]||
o < YT w2 — E(W2)|| (by Minkowski inequality)

o < YImH T W2 || (since W2 is non negative)

o = 0(b2) (recall the sum is a isosceles triangular shaped)

2 3 1
o = O(nz_E) & O(nz_ﬁ) (by b, = O(nl_g) andp > 1)




Proof of lemma 1:

|2t [E(SPF) = E(SP)]]| = 0(1®) (p.20)

Recall S; = X5, X;. Mimicking proof of ||P;_, W{||«, we have
2

o ||P-SE| < CViXioy 6,( — 1) for r < 1 where € = 2,0,

Since Y4 |E(S?|F1) — E(S?)] = Xi-_o Xy P-S? (definition of projection), we have
X [E(S2|Fy) — E(Slz)]” =¥1_ |IZi, 2.52||” (MDS is uncorrelated)

<Y1 (3, ]l2-S2I))? (by Minkowski inequality)

o

[e]

o

[e]

3 2 .
<Y _ (ClE §-=1 5,(j — r)) (by inequality above and bounding Y51 6,(j — ) with 18,(j — 1))
o lIs it possible that ¥_; 6,(j — 1) > 1= Xi_ 1 X', 8,(j — 1) > 1 X5_, 8,(j — r)? Then this step do not hold
> However the result is still correct by considering ¥i—; X'21 8, — 1) < [X'2,6,( — r)]2

< C2BA Yoy Yt 82 — 1) (by [Xh21 82( —r)] <A Y8, — 1)
= 0(13)0(1) = o(l*) (by A, < oo for a > 4)

o

o




Proof of lemma 1:
. 2
lim = [|ZEo[S7 = EGPII = 30 (p-21)

[—> o0

Let A; = liZZ%:lSiz. By invariance principle and continuous mapping theorem,

d
o A; > o2 fol Wtzdt (continuous mapping changes sum to integral, probably typo for IB)

(e]

By theorem 1 in Wu (2007), [|S;]|, = 0(\/7) (moment inequality)
 Hence [14]lz < =241 [1S? ]| (by Minkowski inequality)
2
1
=2

o = 2 §=10(i) = 0(1) (by moment inequality)

12

> Since % > 2, {[4; — E(4))]%,1 = 1} is uniformly integrable (Chow and Teicher, 1988)

LIS 1% (by definition of norm, should be equal?)

> Hence weak convergence of 4; implies the £2 moment convergence, which is

2
o E{[4 — E(4D)?} - o*E{[]IWZ — EW)]dt} = 320* (by stochastic calculus, not trivial...




Proof of lemma 1:

E fol[WtZ — E(W)]dt =

2
Letf(t,w)=%w4.Wehaveg—f=0a—‘f}:g and — f—ZWZ.Notethat,u=0anda=1.
0

o e a_f _f l 2 azf f E 3 ~y
df (t, W;) = T u oW, +20 o7 ] dt+ o th Wt dt + ZWg dW; (by Ito’s lemma)

- Rearranging the terms, fl W2dt = —Wf = —f W2dw, = 1 -+ \/EZ where Z ~ N(0,1)

E (f01 Wtzdt) —E(W ) = = :§ (by martingale property and E(X?") = ¢?"(2n — 1! if X ~ N(0, 02). See this Q&A)

o E [(fo1 W2dt ] = E (J f, wiwp2dtds) = f f, E(W2W;?)dtds (by Fubini's theorem)

o = [0 [TEIW, — W)PWZ + 2(W, — WOWZ + Wildeds + [ [ E[W, — W)2W2 + 2(W, — W)W + W]deds

o = fol fOS - t)t + 3t?]dtds + f1 f1 [(t — s)s + 3s2]dtds (by independent increment and E(X?"**1) = 0if X ~ N(0,02))
7 7

1 1
:Z+24 SOVClT'(f Wtdt) E_ZZE

> On the other hand, f E(W2)dt = f tdt = (since W, ~ N(0,t))

2
 Hence using representation, E {fo (W2 — E(Wtz)]dt} —FE (%ZZ) — %



https://math.stackexchange.com/questions/92648/calculation-of-the-n-th-central-moment-of-the-normal-distribution-mathcaln

Proot of theorem 2.2 and lemma 1:
summary of techniques

Stochastic calculus (my RMSC5102 note has a quick summary)
o Useful when we combine invariance principle and continuous mapping theorem
o Break down product of wiener process into sum of independent increment (see last slide)

o Vitali convergence theorem: a sequence of random variables converging in probability also converge in the
mean if and only if they are uniformly integrable

o A class of random variables bounded in LP,p > 1 is uniformly integrable (see two slides ago)

o See Theorem 5.5.2 in Probability Theory and Examples by Durrett




Convergence
rate, a = 2

SECTION 3.2.3




Proof of theorem 2.3: 1
E(V, —v,0%) = 0[n1+(1_Q)(1_5)] (p.20)

We do not have moment inequality when a = 2 (i.e. in £L1). Alternative strategy is needed.
> Let j > 0. To bound the autocovariance, we have |y(j)| = |E(XoX;)|

= |E|Zicz(PiXo) (P:X;)]| (projection decomposition, X; = ¥;cz PiX;)

o < Ve E|(PXo)(P:X;)| (by Minkowski inequality)

o < Yieall @PX)I||(P:X;)]|| (by Cauchy-Schwarz inequality)

o QOrthogonality of projection gives a equal sign here but it does not affect the result

< Y2 w@w( + ) (by |PoX;ll, < w, (i) and w, (i) = 0if i < 0)

(e]

(e]

For §; = X; + -~ + X}, since Z‘]’-":(,jqw(/) < oo for some g € (0,1] (by assumption)
o We have |E(Slz) — laz| = |ly(0) -+ ZZ§-=1(l —Dy(§) — Y ez v ()| (by representation of TAVC)
o < 252, min(j, 1) [y ()] (by Minkowski inequality)
° < 2¥%2 min(,D'"1EZ min(, D w(@Dw(@ +j) = 01 (by X720 jw()) < o)




Proof of theorem 2.3: 1
E(V, —v,0%) = 0[n1+(1_Q)(1_5)] (p.20)

Combining the results, we have |E (V,, — v,0%)| (t,, should be v,,, probably typo)
o <YM LEW;) — (i —t; + 1)a?| (by Minkowski inequality)
o =Y 0[( —t; + D79 (by |E(SE) — la?| = 0(1179))

o = 0(nb,, ?) (since by, is the bound of batch size)

1

o = ol 00 oy b, = 0(n" )




Proot of theorem 2.3:
summary of techniques

Moment inequality is not available in £!
o Bound the target using projection decomposition and Wu’s dependence measures

o The polynomial decay rate of stability determines convergence rate




Almost sure
convergence

SECTION 3.3




Almost sure convergence (p.9)

Glynn and Whitt (1992) argued that strongly consistent estimate of ¢ is needed
o For asymptotic validity of sequential confidence intervals
o Hence we need to consider the almost sure convergence behaviour for MCMC application

Corollary 3: Under the conditions in corollary 2,

1

o i.e.choose a; = |ckP],p = and assume X; € L% E(X;) = 0and A, < oo for some a > 2

1 2
_+_
2 «a
o OrX; € L% E(X;) = 0and X7, j9w(j) < oo for some q € (0,1]

3 2

> We have ||maX|V E(V)||| _o(zvflog;\/)WhereT_§_£+Z

o Note that 7 is the convergence rate from theorem 2

o Also Vy — E(Vy) = 045 [N*(log N)?] and L 02 =04, [NE_E_ZP(logN)Z]

o Possible to improve using strong invariance prmmple in Berkes, Liu and Wu (2014)7?




Proof of corollary 3:
|maxiv, — EG@R)I ||, = 0N log M) (p.21)
2

Choose d € N such that 241 < N < 24 (for the use of Borel-Cantelli lemma later?)
- For 15 a < b, I, ~Vy — £y — 1)l = [equa W7 — £
2

o < Yol pi1 Pimk W[« (by projection decomposition and Minkowski inequality)
2

2
) ars 1 _
o = B[Sl — b+ 1)3] 0(b*7») (mimic proof of T22m g™, P, Wala)
- 2

e = 0| - a9 0P = 0 (b — ayepD)]

1
> Note that the bound of batch/block size is b,,, = 0(n1_5) and bound of sample size is b here




Proof of corollary 3:
Hma&qvn ~E(RI||, = 0(NlogN) (p.21-22)
ns =
2

By proposition 1 in Wu (2007), (maximal inequality)

RIN M|

sz'

o < ¥4, [Zz 1 Var = Vargeny = E[Vary = Var o )12
2]

2
A=

T A P ¢
=ye O{ZZd 0 [(2’”) (2’”l)2( )] } (by moment inequality proved in last slide)
2

3a 1)1 3a 1 a
° =Zfﬂl=o{ 2" () leder[ (1__)]} (by independence of summation index)

3a 1)1 E
o < Y4 0{ (Zd)1+_(1_ ) } (since [ < 2977
2,3 3
=0(d +1)0 [(zd)a 2 ZP]
o = O(N"logN) (since T =%—%+§and N <2%=logN <d)




Proot of corollary 3:
Vn — E(Vy) = 045 [N*(log N)?] (p.22)

Note that% > 1. From Hm<a1\>,<|Vn — E(V)] Ha = O(N*%logN) (proved in last two slides),
n=s =

@
2

0[(d+1)2%7]

o We have — 1 ”maXIV —E(V)|||g=zg; ) =y 1O(d a)<oo

(Zdrd2)5 (2 sz)z

o Hence Vy — E(Vy) = 04 [N*(log N)?] (by Borel-Cantelli lemma)
o Borel-Cantelli lemma: for a sequence of events Ejy, ..., if Ygeq P(E) < oo, then P (limsup En) =0

n—oo

[rrrlls«'slﬁan—E(Vn)l | _ E[ <rr{1$al\),(|vn_E(Vn)|

NT(log N)2 > €l = NT(og V)2 > e)] for all € > 0 (write probability as expectation of indicator)

max |Vn—E(Vn)|

(by Markov inequality)

N7(log N)Ze

o < : max|V, —

n<2

by property of norm and > 1)

Ta
N 2 (log N)&




Proof of corollary 3:

N _ g2 — o |Na 2 2 (log V)2 (p.22)

Note that Vy — E(Vy) = 0,4 [N*(log N)?] (proved in last slide)

o And E(V,, — v,,0%) = [ 1+(1- q)(l__)] (theorem 2.3, probably typo in t,)

1

By choosing optimal rate p = 21+2, E(Vy —vyo?) = O(NY) < o[NT(log N)?]
q

2«

o

3 3 2
We have Vy —vyo? =0, ¢ [NZ 2" a(logN) ]

o

(e]

Finally recall vy = O(N _5) (proved in discussion of convergence rate when u # 0)
2 1 1

Hence Z—N — 0% =044 lN“ 2 2p(log N)? ] (little o times big O is little o)
N

[e]




Proot of corollary 3:
summary of techniques

Establish almost sure convergence
o Use maximal inequality
o Apply Borel-Cantelli lemma on maximal with expanding samples

o Cantor’s diagonal argument?

o |dea: LP convergence with fast enough convergence rate implies almost sure convergence




Implementation
1ISSUES

SECTION 4



Remaining question (p.9)

We can see that choice of block start a; uniquely determines property of recursive TAVC
o The batch size [; is determined by the selection rule (e.g. ASR, TSR, PSR)
o Under the simple choice a; = |[ckP], we have established the optimal choice of p
o |t suffices to find the optimal choice of ¢ in order to minimize AMSE

0'e) . .
Assume A, < oo forsome a > 4and Y52, j9w(j) < o forg=1
o Need a > 4 for close form of AMSE (T2.2) and g = 1 for finite bias

> By corollary 2, optimal choice of p = %

o Choose data driven estimate of ¢ by procedure in BUhlmann and Kunsch (1999)




Close form of AMSE (p.10)

Since Y7o jw(j) < 0, X2, ily ()| < oo (by bound of autocovariance in proof of T2.3)
o As | — oo, E(Slz) —lo? ==2Y% min(k, Dyk) = =2%5% 1 ky(k) + o(1) =0 + o(1)

o Keith (and I) usually denote v, & Y.°__|k|Py(k) and u, & Y0 |k[P|y (k)]

Thus we have E(V,, — v,0%) = n8 + o(n)

Now we decompose the AMSE in T2.2 into variance and bias”2,

(e]

(e]

2
V
|| — 02| = v = EGRIE + 1E (W) = vo? 2]
n 2 Un
3 2 1
_2\2 Z_ 4.-p 2 Pn2 =
NG oy 4[” L SURNIEPY +o(n?)| (by v, ~ ZE=n*"P, T2.2 and the result above)
i 12p—9 4p—2
5
o = 2 64n 3 [ o*n? + 0°n? + O(nz)]
81c3
2 4 2
o — (EC—+2_56C 3K >04 3 where k —@
9 81 o




Optimal choice of ¢ (p.10)

2 256 4 -..: minC = solve(dMse, c)

. . ... 16 = =
The optimal choice of ¢ should minimize = c3 + == ¢ 3k? .1 # first roc
9 81 : simplify(minC[@])

Out[1]:

o |llustration with SymPy
o from sympy import symbols, diff, solve, simplify, Rational, init_printing 4V2K/3
o init_printing() # for printing Latex in console

o _ In [2]: simplify(mse.subs(c, minC[@])})
° ¢, kappa = symbols("c, kappa", real=True, positive=True) # kappa = v1l/sigma”2 Out[2]:
o # Coefficent of Bias”™2 and variance
o b2 = Rational(256,81) *c**(-Rational(4,3)) *kappa**2

o v = Rational(16,9) *c**(Rational(2,3)) # use Rational(p, q) if you want solution in fraction

16V12k23/9

° mse =Db2 +v

o dMse = diff(mse,c)

o minC = solve(dMse, c) # optimal c

o # first root minimize after inspection
o simplify(minC[O])

o simplify(mse.subs(c, minC[0]))




Estimate optimal ¢ (p.10-11)

By prime factorization, we can see that output of SymPy matches with

14

(¢]

2
Optimal AMSE of 6%z (n) = 930371 3 with optimal ¢ = ﬁlzm = 4frc

33
2 1 2 8

2
Literature shows that optimal AMSE of 62,,,,(n) = 2333030313

o

o With batch size 1, l/l nsJ and optimal A3 = i = K /—/1

o Recall that we do not know the optimal functional of block start (same for batch size here)
o This shows AMSE [62sz(n)]| = 1.778 AMSE[62,,,,(n)]. Chan and Yau’s (2017) TSR and PSR dominate it in MSE sense

[e]

Theorem 4.1 in BUhlmann and Kunsch (1999) g|ves e — =83, =[n"3

o They gives a procedure to estimate ln via pilot simulation. Hence n is the sample size in pilot simulation here
o Note that this is asymptotic. Can we have better pilot procedure for small sample?
3

: : : A_ 8 .3 _ 8 5
Using these relationship, we have ¢ = 3\/5/1* " l,n s

o




Buhlmann and Kiunsch’s (1999)
algorithm (p.10-11)

Let the Tukey-Hanning window wyy(x) = % [1 4+ cos(mx)]I(|x|] < 1)

%{1 + cos[5(x — 0.8)m]}, 0.8 < x| <1

o Let the splt-cosine window wgq(x) = 1, |x| < 0.8
0, x| >1
~ _ 1 on—|k| %% v —
> 1) Compute (k) = — 3=, (X; — X)Xz — X)) fork=1—-n,..,n—1

1

1 3

1 n-1 s 2
2) Let by = =. For m = 1,2,3,4, compute by, = n‘g[ SRt 7K
6

4
n-1 wSc(kbm_lnm)kZ?(k)Z]

[e]

n

4 2 |3

R N N 1 n—1 =)o
3) Let [,, be the closest integer of b1, where b = n"3 by WTH(kb‘*ZZl)y(k))

3(snzt wc(kbanzt) klp o)

[e]

2




Other possible procedures

AR(1) plug-in method

ACVF inspection




