Reading Group: Recursive Estimation of Time-Average Variance Constants (Wu, 2009)

HEMAN LEUNG
SPRING, 2020

Introduction

SECTION 1

Time-average variance constant (p.1)

Let $\left\{X_{i}\right\}_{i \in \mathbb{Z}}$ be a stationary and ergodic process with mean $\mu=E\left(X_{0}\right)$ and finite variance

- Denote covariance function by $\gamma_{k}=\operatorname{Cov}\left(X_{0}, X_{k}\right) \forall k \in \mathbb{Z}$

Sample mean: $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

- Asymptotic normality under suitable conditions: $\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)$
- σ^{2} here is called the time-average variance constant (TAVC) or long-run variance
- Note that $\operatorname{Var}\left(X_{i}\right)=\gamma_{0} \neq \sigma^{2}$ in time series setting

Estimation of σ^{2} is important for inference of time series

- Representation under suitable conditions: $\sigma^{2}=\sum_{k \in \mathbb{Z}} \gamma_{k}$
- Check previous reading group meeting (slide p.20, also check Keith's note) for the conditions

Overlapping batch means (p.2)

Overlapping batch means (OBM): $\hat{\sigma}_{o b m}^{2}(n)=\frac{l_{n}}{n-l_{n}+1} \sum_{j=1}^{n-l_{n}+1}\left(\frac{1}{l_{n}} \sum_{i=j}^{j+l_{n}-1} X_{i}-\bar{X}_{n}\right)^{2}$

- First proposed by Meketon and Schmeiser (1984)
- Closely related to lag window estimator using Bartlett kernel (Newey \& West, 1987)
- An illustration assuming $\mu=0$
- Same AMSE if bandwidth l_{n} are both chosen optimally
- Nonoverlapping (NBM) version is also possible, but with worse properties
- Song (2018) suggested an optimal linear combination of OBM and NBM would be better than solely using OBM
- I discussed with Keith and we thought that her evidence was not solid enough (e.g. no theoretical properties shown)

Recursive estimation

Recursive formula for sample mean: $\bar{X}_{n}=\frac{n-1}{n} \bar{X}_{n-1}+\frac{1}{n} X_{n}$
Recursive formula for sample variance: $S_{n}^{2}=\frac{n-2}{n-1} S_{n-1}^{2}+\frac{1}{n}\left(X_{n}-\bar{X}_{n-1}\right)^{2}$

- This is Welford's (1962) online algorithm

Recursive formula for TAVC: did not exist

- Note that $\hat{\sigma}_{o b m}^{2}(n)$ has both $O(n)$ computational and memory complexity
- When $l_{n} \neq l_{n-1}$, all batch means need to be updated
- However it is important for
- Convergence diagnostics of MCMC
- Sequential monitoring and testing

Notations (p.3)

\mathcal{L}^{p} norm: $\|X\|_{p} \stackrel{\text { def }}{=}\left(E|X|^{p}\right)^{\frac{1}{p}}, X \in \mathcal{L}^{p}$ if $\|X\|_{p}<\infty$

- Write $\|X\|=\|X\|_{2}$

Same order: $a_{n} \sim b_{n}$ if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$

- $a_{n}=b_{n}$ if $\exists c>0$ such that $\frac{1}{c} \leq\left|\frac{a_{n}}{b_{n}}\right| \leq c$ for all large n

Let $S_{n}=\sum_{i=1}^{n} X_{i}-n \mu$ and $S_{n}^{*}=\max _{i \leq n}\left|S_{i}\right|$

Recursive TAVC

 estimatesSECTION 2

Algorithm when $\mu=0$

Start of each block: $\left\{a_{k}\right\}_{k \in \mathbb{N}}$ is a strictly increasing integer sequence such that

- $a_{1}=1$ and $a_{k+1}-a_{k} \rightarrow \infty$ as $k \rightarrow \infty$
- Start of each batch: $t_{i}=a_{k}$ if $a_{k} \leq i<a_{k+1}$

Component: $V_{n}=\sum_{i=1}^{n} W_{i}^{2}$ where $W_{i}=X_{t_{i}}+X_{t_{i}+1}+\cdots+X_{i}$

- $v_{n}=\sum_{i=1}^{n} l_{i}$ where $l_{i}=i-t_{i}+1$
- Observe that W_{i} is the batch sum and l_{i} is the batch size

Algorithm: at stage n, we store $\left(n, k_{n}, a_{k_{n}}, v_{n}, V_{n}, W_{n}\right)$. At stage $n+1$,

- If $n+1=a_{k_{n}+1}$, set $k_{n+1}=k_{n}+1$ and $W_{n+1}=X_{n+1}$. Otherwise set $k_{n+1}=k_{n}$ and $W_{n+1}=W_{n}+X_{n+1}$
- Set $V_{n+1}=V_{n}+W_{n+1}^{2}$ and $v_{n+1}=v_{n}+\left(n+2-a_{k_{n+1}}\right)$ since $t_{n+1}=a_{k_{n+1}}$
- The estimate is $\hat{\sigma}_{\Delta S R}^{2}(n+1)=\frac{V_{n+1}}{v_{n+1}}$

Graphical illustration (Chan and Yau, 2017)

Intuitions

Choice of a_{k} and t_{n} (p.3-4)

A simple choice is $a_{k}=\left\lfloor c k^{p}\right\rfloor$ where $c>0$ and $p>1$ are constants

- Optimal choice of functional is not known
- I discussed with Keith and we need to resort to variational calculus for this problem
- However it seems to be unsolvable without proper boundary conditions (tried on SymPy)

Note that t_{n} is implicitly determined by choice of a_{k}

- Since $a_{k} \leq n<a_{k+1}$, choosing $a_{k}=\left\lfloor c k^{p}\right\rfloor$ means $c k^{p}-1<n<c(k+1)^{p}-1$
- Solving $k=k_{n}$ from the above inequalities, we have
- $t_{n}=a_{k_{n}}$ where $k_{n}=\left[\left(\frac{n+1}{c}\right)^{\frac{1}{p}}\right]-1$

Modification when $\mu \neq 0$ (p.4-5)

General component: $V_{n}^{\prime}=\sum_{i=1}^{n}\left(W_{i}^{\prime}\right)^{2}$ where $W_{i}^{\prime}=X_{t_{i}}+X_{t_{i}+1}+\cdots+X_{i}-l_{i} \bar{X}_{n}$

- Observe that $\left(W_{i}^{\prime}\right)^{2}=W_{i}^{2}-2 l_{i} W_{i} \bar{X}_{n}+\left(l_{i} \bar{X}_{n}\right)^{2}$
- Let $U_{n}=\sum_{i=1}^{n} l_{i} W_{i}$ and $q_{n}=\sum_{i=1}^{n} l_{i}^{2}$
- Note that they can also be updated recursively
- Then $V_{n}^{\prime}=V_{n}-2 U_{n} \bar{X}_{n}+q_{n}\left(\bar{X}_{n}\right)^{2}$ and $\hat{\sigma}_{\Delta S R}^{2}(n)=\frac{V_{n}^{\prime}}{v_{n}}$
- Complete algorithm is similar to previous logic so we skip it here

Generalization to spectral density estimation is possible

- Relation between spectral density and TAVC was discussed in previous reading group (slide p.47)

Convergence properties

SECTION 3

Representation of TAVC (p.5-6)

Consider Wu's (2005) nonlinear Wold process

- Weak stability with $p=2$ (i.e. $\Omega_{2}<\infty$) guarantees invariance principle, which entails CLT

Representation of TAVC

- Assume $E\left(X_{i}\right)=0$ and $\sum_{i=0}^{\infty}\left\|\mathcal{P}_{0} X_{i}\right\|_{2}<\infty$ where $\mathcal{P}_{i}=E\left(\cdot \mid \mathcal{F}_{i}\right)-E\left(\cdot \mid \mathcal{F}_{i-1}\right)$
- The later assumption is equivalent to $\Omega_{2}<\infty$ (which suggest short-range dependence)
- Then $D_{k} \stackrel{\text { def }}{=} \sum_{i=k}^{\infty} \mathcal{P}_{k} X_{i} \in \mathcal{L}^{2}$ and is a stationary martingale difference sequence w.r.t. \mathcal{F}_{k}
- Proved in previous reading group (slide p.21)
- By theorem 1 in Hannan (1979), we have invariance principle and $\sigma=\left\|D_{k}\right\|_{2}$
- Why not $\left\|D_{0}\right\|_{2}$? Because they have same distribution by stationarity and we cannot observe X_{0} in practice
- Let $S_{n}=\sum_{i=1}^{n} X_{i}$ and $M_{n}=\sum_{i=1}^{n} D_{i}$
- If $\Omega_{\alpha}<\infty$ for $\alpha>2$, then $\left\|S_{n}-M_{n}\right\|_{\alpha}=o(\sqrt{n})$
- This partly comes from moment inequality. See previous reading group (slide p.20)

Moment convergence (p.6-7)

Theorem 1: let $E\left(X_{i}\right)=0$ and $X_{i} \in \mathcal{L}^{\alpha}$ where $\alpha>2$

- Assume $\sum_{i=0}^{\infty}\left\|\mathcal{P}_{0} X_{i}\right\|_{\alpha}<\infty$
- Equivalent to $\Omega_{\alpha}<\infty$, which is mild as σ^{2} does not always exist for long-range dependent processes
- Further assume as $m \rightarrow \infty, a_{m+1}-a_{m} \rightarrow \infty$ and $\frac{\left(a_{m+1}-a_{m}\right)^{2}}{\sum_{k=2}^{m}\left(a_{k}-a_{k-1}\right)^{2}} \rightarrow 0$
- Earlier condition $a_{m+1}-a_{m} \rightarrow \infty$ is needed to account for dependence
- Later condition is needed so that a_{m} does not diverge to ∞ so fast
- Then $\left\|\frac{V_{n}}{v_{n}}-\sigma^{2}\right\|_{\frac{\alpha}{2}}=o(1)$
- This implies finite forth moment is not necessary for consistency of $\hat{\sigma}_{\Delta S R}^{2}(n)$ (e.g. take $\alpha=3$)
- Convergence in $\mathcal{L}^{\frac{\alpha}{2}}$ norm where $\alpha>2$ implies convergence in probability (i.e. consistency)

Corollary 1: under same assumptions of theorem 1, we also have $\left\|\frac{V_{n}^{\prime}}{v_{n}}-\sigma^{2}\right\|_{\frac{\alpha}{2}}=o(1)$

Proof of theorem 1: blocking (p.13)

Blocking: for $n \in \mathbb{N}$ choose $m=m_{n} \in \mathbb{N}$ such that $a_{m} \leq n<a_{m+1}$

- m represent total number of complete blocks
- Then $v_{n}=\sum_{j=1}^{n}\left(j-t_{j}+1\right)=\sum_{i=2}^{m} \sum_{j=a_{i-1}}^{a_{i}-1}\left(j-t_{j}+1\right)+\sum_{j=a_{m}}^{n}\left(j-t_{j}+1\right)$

。 $=\frac{1}{2} \sum_{i=2}^{m}\left(a_{i}-a_{i-1}\right)\left(a_{i}-a_{i-1}+1\right)+\frac{1}{2}\left(n-a_{m}\right)\left(n-a_{m}+1\right)$

- $\sim \frac{1}{2} \sum_{i=2}^{m}\left(a_{i}-a_{i-1}\right)^{2}$ by assumption of theorem 1

Note that $1 \leq \liminf _{m \rightarrow \infty} \frac{v_{n}}{v_{a_{m}}} \leq \limsup _{m \rightarrow \infty} \frac{v_{a_{m+1}}}{v_{a_{m}}}$ since $v_{a_{m+1}} \geq v_{n}$ (?)

- By assuming $\frac{\left(a_{m+1}-a_{m}\right)^{2}}{\sum_{k=2}^{m}\left(a_{k}-a_{k-1}\right)^{2}} \rightarrow 0, \limsup _{m \rightarrow \infty} \frac{v_{a_{m+1}}}{v_{a_{m}}}=1$
- Hence both limits are 1

Proof of theorem 1: martingale approximation (p.13)

For any fixed $k_{0} \in \mathbb{N}$, since $a_{m+1}-a_{m}$ is increasing to ∞, we have

- $\lim _{m \rightarrow \infty} \frac{1}{v_{n}} \sum_{i=1}^{n} \mathbb{I}\left(i-t_{i}+1 \leq k_{0}\right) \leq \lim _{m \rightarrow \infty} \frac{1}{v_{n}} m k_{0}=0$
- Using $(m+1) k_{0}$ is better (?)

Martingale approximation: $\sum_{i=0}^{\infty}\left\|\mathcal{P}_{0} X_{i}\right\|_{\alpha}<\infty$ implies $D_{k}=\sum_{i=k}^{\infty} \mathcal{P}_{k} X_{i} \in \mathcal{L}^{\alpha}$

- Let $M_{n}=\sum_{i=1}^{n} D_{i}$. By theorem 1 in Wu (2007), the above condition also implies
- $\left\|S_{n}\right\|_{\alpha}=O(\sqrt{n}),\left\|M_{n}\right\|_{\alpha}=O(\sqrt{n})$ and $\left\|S_{n}-M_{n}\right\|_{\alpha}=o(\sqrt{n})$
- Hence as $n \rightarrow \infty, \rho_{n} \xlongequal{\text { def }} \frac{1}{n}\left\|S_{n}^{2}-M_{n}^{2}\right\|_{\frac{\alpha}{2}} \leq \frac{1}{n}\left\|S_{n}-M_{n}\right\|_{\alpha}\left\|S_{n}+M_{n}\right\|_{\alpha} \rightarrow 0$
- Inequality by Cauchy-Schwarz: $\left\|\left(S_{n}-M_{n}\right)\left(S_{n}+M_{n}\right)\right\|_{\frac{\alpha}{2}} \leq\left\|S_{n}-M_{n}\right\|_{\alpha}\left\|S_{n}+M_{n}\right\|_{\alpha}$
- Aim to approximate V_{n} by $Q_{n}=\sum_{i=1}^{n} R_{i}^{2}$ where $R_{i}=D_{t_{i}}+D_{t_{i}+1}+\cdots+D_{i}$
- Such that $\left\|Q_{n}-V_{n}\right\|_{\frac{\alpha}{2}}=o\left(v_{n}\right)$ and show that $\left\|\frac{Q_{n}}{v_{n}}-\sigma^{2}\right\|_{\frac{\alpha}{2}}=o(1)$

Proof of theorem 1: $\left\|Q_{n}-V_{n}\right\|_{\frac{\alpha}{2}}=o\left(v_{n}\right)(\mathrm{p} .13)$

$\limsup _{n \rightarrow \infty} \frac{1}{v_{n}}\left\|V_{n}-Q_{n}\right\|_{\frac{\alpha}{2}} \leq \limsup _{n \rightarrow \infty} \frac{1}{v_{n}} \sum_{i=1}^{n}\left\|R_{i}^{2}-W_{i}^{2}\right\|_{\frac{\alpha}{2}}$ (by Minkowski inequality)

$$
\begin{aligned}
& \circ \leq \limsup _{n \rightarrow \infty} \frac{1}{v_{n}} \sum_{i=1}^{n}\left(i-t_{i}+1\right) \rho_{i-t_{i}+1} \text { (by definition of } \rho_{n} \text { and stationarity) } \\
& \circ \leq \limsup _{n \rightarrow \infty} \frac{1}{v_{n}} \sum_{1 \leq i \leq n: i-t_{i}+1>k_{0}}\left(i-t_{i}+1\right) \rho_{i-t_{i}+1}\left(\text { by } \lim _{m \rightarrow \infty} \frac{1}{v_{n}} \sum_{i=1}^{n} \mathbb{I}\left(i-t_{i}+1 \leq k_{0}\right)=0\right) \\
& \circ \leq \sup _{k \geq k_{0}} \rho_{k}\left(\text { by } \sum\left(i-t_{i}+1\right) \rho_{i-t_{i}+1} \leq \sup _{k \geq k_{0}} \rho_{k} \sum\left(i-t_{i}+1\right)\right) \\
& \circ \rightarrow 0\left(\text { by } \rho_{n} \rightarrow 0 \text { as } n \rightarrow \infty\right)
\end{aligned}
$$

Proof of theorem 1: $\left\|\frac{Q_{n}}{v_{n}}-\sigma^{2}\right\|_{\frac{\alpha}{2}}=o(1)(\mathrm{p} .14)$

Recall that $t_{i}=a_{k}$ if $a_{k} \leq i \leq a_{k+1}-1$

- Block square of sum: $Y_{k}=\sum_{i=a_{k}}^{a_{k+1}-1}\left(D_{t_{i}}+D_{t_{i}+1}+\cdots+D_{i}\right)^{2}=\sum_{i=a_{k}}^{a_{k+1}-1}\left(D_{a_{k}}+D_{a_{k}+1}+\cdots+D_{i}\right)^{2}$
- Block sum of square: $\tilde{Y}_{k}=\sum_{i=a_{k}}^{a_{k+1}-1}\left(D_{a_{k}}^{2}+D_{a_{k}+1}^{2}+\cdots+D_{i}^{2}\right)$
- $\left\|Y_{k}\right\|_{\frac{\alpha}{2}} \leq \sum_{i=a_{k}}^{a_{k+1}-1}\left\|\left(D_{a_{k}}+D_{a_{k}+1}+\cdots+D_{i}\right)^{2}\right\|_{\frac{\alpha}{2}}$ (by Minkowski inequality)
$\circ=\sum_{i=a_{k}}^{a_{k+1}-1}\left\|D_{a_{k}}+D_{a_{k}+1}+\cdots+D_{i}\right\|_{\alpha}^{2}$
- $\leq \sum_{i=a_{k}}^{a_{k+1}-1} c_{\alpha}\left(i-a_{k}+1\right)\left\|D_{1}\right\|_{\alpha}^{2}$ where c_{α} is a constant which only depends on α
- By Burkholder's inequality and \mathcal{L}^{α} stationarity. See previous reading group (slide p. 21-22)
- On the other hand, $\left\|\tilde{Y}_{k}\right\|_{\frac{\alpha}{2}} \leq \sum_{i=a_{k}}^{a_{k+1}-1}\left(i-a_{k}+1\right)\left\|D_{1}\right\|_{\alpha}^{2}$ (by Minkowski inequality and \mathcal{L}^{α} stationarity)

Proof of theorem 1: $\left\|\frac{Q_{n}}{v_{n}}-\sigma^{2}\right\|_{\frac{\alpha}{2}}=o(1)($ p.14-15)

Since $1<\frac{\alpha}{2} \leq 2$ and $Y_{k}-E\left(Y_{k} \mid \mathcal{F}_{a_{k}}\right)$ is a MDS, we have

- It seems this impose $\alpha \leq 4$ on theorem 1
- $\left\|\sum_{k=1}^{m}\left[Y_{k}-E\left(Y_{k} \mid \mathcal{F}_{a_{k}}\right)\right]\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} \leq c_{\alpha} \sum_{k=1}^{m}\left\|Y_{k}-E\left(Y_{k} \mid \mathcal{F}_{a_{k}}\right)\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$ (by Burkholder's inequality)
${ }^{\circ} \leq c_{\alpha} \sum_{k=1}^{m}\left\|Y_{k}\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$ (by Jensen's inequality, c_{α} actually changes)
- Similarly, $\left\|\sum_{k=1}^{m}\left[\tilde{Y}_{k}-E\left(\tilde{Y}_{k} \mid \mathcal{F}_{a_{k}}\right)\right]\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} \leq c_{\alpha} \sum_{k=1}^{m}\left\|\tilde{Y}_{k}\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$

Note that D_{i} are also MDS and $E\left(\tilde{Y}_{k} \mid \mathcal{F}_{a_{k}}\right)=E\left(Y_{k} \mid \mathcal{F}_{a_{k}}\right)$

- Difference between \tilde{Y}_{k} and Y_{k} lies in the cross terms, e.g. $D_{a_{k}} D_{a_{k}+1}$
- However by property of MDS, $E\left(D_{a_{k}} D_{a_{k}+1}\right)=0$

Proof of theorem 1: $\left\|\frac{Q_{n}}{v_{n}}-\sigma^{2}\right\|_{\frac{\alpha}{2}}=o(1)(\mathrm{p} .15)$

Note that $\left\|\sum_{k=1}^{m}\left(Y_{k}-\tilde{Y}_{k}\right)\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}=\left\|\sum_{k=1}^{m}\left[Y_{k}-\tilde{Y}_{k}-E\left(Y_{k} \mid \mathcal{F}_{a_{k}}\right)+E\left(Y_{k} \mid \mathcal{F}_{a_{k}}\right)\right]\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$

- We do not work on cross-term directly with Minkowski directly as the bound is looser
$\leq c_{\alpha} \sum_{k=1}^{m}\left(\left\|Y_{k}\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}+\left\|\tilde{Y}_{k}\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}\right)$ (by Minkowski and inequalities proved in last slide)
$\circ \leq c_{\alpha}\left\|D_{1}\right\|_{\alpha}^{\alpha} \sum_{k=1}^{m}\left[\sum_{i=a_{k}}^{a_{k+1}-1}\left(i-a_{k}+1\right)^{\frac{\alpha}{2}}(\right.$ by inequalities proved in two slides ago $)$
$\circ \leq c_{\alpha}\left\|D_{1}\right\|_{\alpha}^{\alpha} \max _{h \leq m}\left[\sum_{i=a_{h}}^{a_{h+1}-1}\left(i-a_{h}+1\right)\right]^{\frac{\alpha}{2}-1} \sum_{k=1}^{m}\left[\sum_{i=a_{k}}^{a_{k+1}-1}\left(i-a_{k}+1\right)\right]$
- Recall that $v_{a_{m}}=\sum_{k=1}^{m}\left[\sum_{i=a_{k}}^{a_{k+1}-1}\left(i-a_{k}+1\right)\right]$ by blocking

Proof of theorem 1: $\left\|\frac{Q_{n}}{v_{n}}-\sigma^{2}\right\|_{\frac{\alpha}{2}}=o(1)(\mathrm{p} .15)$

Now $v_{n}^{-\frac{\alpha}{2}}\left\|\sum_{k=1}^{m}\left(Y_{k}-\tilde{Y}_{k}\right)\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} \leq v_{n}^{-\frac{\alpha}{2}+1} c_{\alpha}\left\|D_{1}\right\|_{\alpha}^{\alpha} \max _{h \leq m}\left[\sum_{i=a_{h}}^{a_{h+1}-1}\left(i-a_{h}+1\right)\right]^{\frac{\alpha}{2}-1}$

- By $1 \leq \liminf _{m \rightarrow \infty} \frac{v_{n}}{v_{a_{m}}} \leq \limsup _{m \rightarrow \infty} \frac{v_{a_{m+1}}}{v_{a_{m}}}=1$
$\circ \leq c_{\alpha}\left\|D_{1}\right\|_{\alpha}^{\alpha}\left[\frac{\max _{\leq m}\left(a_{h+1}-a_{h}\right)^{2}}{v_{n}}\right]^{\frac{\alpha}{2}-1} \rightarrow 0\left(\right.$ by $\left.\frac{\left(a_{m+1}-a_{m}\right)^{2}}{\sum_{k=2}^{m}\left(a_{k}-a_{k-1}\right)^{2}} \rightarrow 0\right)$
Ergodic theorem: since $D_{k}^{2} \in \mathcal{L}^{\frac{\alpha}{2}}$, we have $\left\|D_{1}^{2}+\cdots+D_{l}^{2}-l \sigma^{2}\right\|_{\frac{\alpha}{2}}=o(l)$
- Therefore $\left\|\tilde{Y}_{k}-E\left(\tilde{Y}_{k}\right)\right\|_{\frac{\alpha}{2}}=o\left[\left(a_{k+1}-a_{k}\right)^{2}\right]$
- Recall that $\tilde{Y}_{k}=\sum_{i=a_{k}}^{a_{k+1}-1}\left(D_{a_{k}}^{2}+D_{a_{k}+1}^{2}+\cdots+D_{i}^{2}\right)$. The sum is a isosceles triangular shaped
- Then $\lim _{n \rightarrow \infty} \frac{1}{v_{n}}\left\|\sum_{k=1}^{m}\left[\tilde{Y}_{k}-E\left(\tilde{Y}_{k}\right)\right]\right\|_{\frac{\alpha}{2}}=\lim _{n \rightarrow \infty} \frac{1}{v_{n}} \sum_{k=1}^{m} o\left[\left(a_{k+1}-a_{k}\right)^{2}\right]=0$

[^0]
Proof of theorem 1: $\left\|\frac{Q_{n}}{v_{n}}-\sigma^{2}\right\|_{\frac{\alpha}{2}}=o(1)(\mathrm{p} .15)$

Since $\frac{1}{v_{n}}\left\|\sum_{k=1}^{m}\left(Y_{k}-\tilde{Y}_{k}\right)\right\|_{\frac{\alpha}{2}} \rightarrow 0 \Leftrightarrow\left\|\sum_{k=1}^{m}\left(Y_{k}-\tilde{Y}_{k}\right)\right\|_{\frac{\alpha}{2}}=o\left(v_{n}\right)$ (first part in last slide)

- And $\lim _{n \rightarrow \infty} \frac{1}{v_{n}}\left\|\sum_{k=1}^{m}\left[\tilde{Y}_{k}-E\left(\tilde{Y}_{k}\right)\right]\right\|_{\frac{\alpha}{2}}=0 \Leftrightarrow\left\|\sum_{k=1}^{m}\left[\tilde{Y}_{k}-E\left(\tilde{Y}_{k}\right)\right]\right\|_{\frac{\alpha}{2}}=o\left(v_{n}\right)$ (second part in last slide)
- We have $\left\|\sum_{k=1}^{m}\left[Y_{k}-E\left(\tilde{Y}_{k}\right)\right]\right\|_{\frac{\alpha}{2}}=\left\|\sum_{k=1}^{m}\left[Y_{k}-E\left(Y_{k}\right)\right]\right\|_{\frac{\alpha}{2}}\left(\right.$ by $\left.E\left(\tilde{Y}_{k} \mid \mathcal{F}_{a_{k}}\right)=E\left(Y_{k} \mid \mathcal{F}_{a_{k}}\right)\right)$
$\circ=\left\|\sum_{k=1}^{m} Y_{k}-v_{a_{m}} \sigma^{2}\right\|_{\frac{\alpha}{2}}=o\left(v_{a_{m}}\right)$ (by ergodic theorem)
Finally we compare Q_{n} and $Q_{a_{m+1}-1}=\sum_{k=1}^{m} Y_{k}$
- $\left\|Q_{n}-Q_{a_{m+1}-1}\right\|_{\frac{\alpha}{2}}=\left\|\sum_{i=n+1}^{a_{m+1}-1} R_{i}^{2}\right\|_{\frac{\alpha}{2}}\left(\right.$ recall $\left.R_{i}=D_{t_{i}}+D_{t_{i}+1}+\cdots+D_{i}\right)$
- $\leq \sum_{i=n+1}^{a_{m+1}-1}\left\|R_{i}\right\|_{\alpha}^{2}$ (by Minkowski inequality)
$\circ=\sum_{i=n+1}^{a_{m+1}-1} O\left(i-t_{i}+1\right) \leq\left(a_{m+1}-a_{m}\right)^{2}=o\left(v_{n}\right)\left(\operatorname{by} \frac{\left(a_{m+1}-a_{m}\right)^{2}}{\sum_{k=2}^{m}\left(a_{k}-a_{k-1}\right)^{2}} \rightarrow 0\right)$

Proof of corollary 1: requirement (p.15)

Note that V_{n}^{\prime} remains unchanged if X_{i} is replaced by $X_{i}-\mu$

- Hence we can assume $\mu=0$ wlog
- By $V_{n}^{\prime}=V_{n}-2 U_{n} \bar{X}_{n}+q_{n}\left(\bar{X}_{n}\right)^{2}$ and theorem 1, it suffices to verify
- $\left\|U_{n} \bar{X}_{n}\right\|_{\frac{\alpha}{2}}=o\left(v_{n}\right)$ and
- $\left\|q_{n}\left(\bar{X}_{n}\right)^{2}\right\|_{\frac{\alpha}{2}}=o\left(v_{n}\right)$

By moment inequality, $\left\|S_{n}\right\|_{\alpha}=O(\sqrt{n}) \Rightarrow\left\|\bar{X}_{n}\right\|_{\alpha}=O\left(n^{-\frac{1}{2}}\right)$

Proof of corollary 1: $\left\|q_{n}\left(\bar{X}_{n}\right)^{2}\right\|_{\frac{\alpha}{2}}=o\left(v_{n}\right)(\mathrm{p} .16)$

Choose $m \in \mathbb{N}$ such that $a_{m} \leq n<a_{m+1}$, we have

$$
\begin{aligned}
& \circ\left(a_{m+1}-a_{m}\right)^{2}=o(1) \sum_{k=2}^{m}\left(a_{k}-a_{k-1}\right)^{2}\left(\text { by } \frac{\left(a_{m+1}-a_{m}\right)^{2}}{\sum_{k=2}^{m}\left(a_{k}-a_{k-1}\right)^{2}} \rightarrow 0\right) \\
& \circ \leq o(1)\left[\sum_{k=2}^{m}\left(a_{k}-a_{k-1}\right)\right]^{2}=o\left(a_{m}^{2}\right)\left(\text { by } a_{k} \text { is positive and telescoping sum }\right)
\end{aligned}
$$

Since $a_{m} \rightarrow \infty$ and is increasing, $\max _{l \leq m}\left(a_{l+1}-a_{l}\right)=o\left(a_{m}\right)=o(n)$ (by result of the above)

- Recall that $q_{n}=\sum_{i=1}^{n} l_{i}^{2}$ and $v_{n}=\sum_{i=1}^{n} l_{i}$, we have
- $q_{n} \leq v_{n} \max _{l \leq m}\left(a_{l+1}-a_{l}\right)$ (by blocking)
- $=v_{n} o(n)$

Hence $\left\|q_{n}\left(\bar{X}_{n}\right)^{2}\right\|_{\frac{\alpha}{2}}=v_{n} o(n) O\left(n^{-1}\right)=o\left(v_{n}\right)$

- $o\left(a_{n}\right) O\left(b_{n}\right)=o\left(a_{n} b_{n}\right)($ little o times big 0 is little o)

Proof of corollary $1:\left\|U_{n} \bar{X}_{n}\right\| \frac{\alpha}{2}=o\left(v_{n}\right)$ (p.16)

If $\left\|U_{n}\right\|_{\alpha}=O(1) \sqrt{\sum_{l=1}^{m}\left(a_{l+1}-a_{l}\right)^{5}}$, then we have

- $\left\|U_{n} \bar{X}_{n}\right\|_{\frac{\alpha}{2}} \leq\left\|U_{n}\right\|_{\alpha}\left\|\bar{X}_{n}\right\|_{\alpha}$ (by Cauchy-Schwarz inequality)
- $=O\left(n^{-\frac{1}{2}}\right) \sqrt{\sum_{l=1}^{m}\left(a_{l+1}-a_{l}\right)^{5}}$ (by moment inequality)

。 $\leq O\left(n^{-\frac{1}{2}}\right)\left[\sum_{l=1}^{m}\left(a_{l+1}-a_{l}\right)^{2}\right] \sqrt{\max _{l \leq m}\left(a_{l+1}-a_{l}\right)}\left(\right.$ by $\left.\sum_{l=1}^{m}\left(a_{l+1}-a_{l}\right)^{4} \leq\left[\sum_{l=1}^{m}\left(a_{l+1}-a_{l}\right)^{2}\right]^{2}\right)$
$\circ=O\left(n^{-\frac{1}{2}}\right)_{o}\left(n^{\frac{1}{2}}\right)\left[\sum_{l=1}^{m}\left(a_{l+1}-a_{l}\right)^{2}\right]\left(\right.$ by $\left.\max _{l \leq m}\left(a_{l+1}-a_{l}\right)=o(n)\right)$

- $=O\left(n^{-\frac{1}{2}}\right)_{O}\left(n^{\frac{1}{2}}\right)_{O\left(v_{n}\right)}$ (by blocking)
- $=o\left(v_{n}\right)($ little o times big O is little o)

Now we only need to prove $\left\|U_{n}\right\|_{\alpha}=O(1) \sqrt{\sum_{l=1}^{m}\left(a_{l+1}-a_{l}\right)^{5}}$

Proof of corollary 1: $\left\|U_{n} \bar{X}_{n}\right\|_{\frac{\alpha}{2}}=o\left(v_{n}\right)(\mathrm{p} .16)$

Recall $l_{i}=i-t_{i}+1$ and $U_{n}=\sum_{i=1}^{n} l_{i} W_{i}$ where $W_{i}=X_{t_{i}}+X_{t_{i}+1}+\cdots+X_{i}$

- Let $h_{j}=h_{j, n}=\sum_{i=1}^{n} l_{i} \mathbb{I}\left(t_{i} \leq j \leq i\right), j=1, \ldots, n$
- Then $U_{n}=\sum_{i=1}^{n} l_{i} \sum_{j=t_{i}}^{i} X_{j}=\sum_{j=1}^{n} X_{j} h_{j}$
- Since $X_{j}=\sum_{k=0}^{\infty} \mathcal{P}_{j-k} X_{j}$ and $\mathcal{P}_{j-k} X_{j}$ is MDS, we have
- $\left\|U_{n}\right\|_{\alpha} \leq \sum_{k=0}^{\infty}\left\|\sum_{j=1}^{n} \mathcal{P}_{j-k} X_{j} h_{j}\right\|_{\alpha}$ (by Minkowski inequality)
$\circ \leq \sum_{k=0}^{\infty} c_{\alpha} \sqrt{\sum_{j=1}^{n}\left\|\mathcal{P}_{j-k} X_{j} h_{j}\right\|_{\alpha}^{2}}$ (by Burkholder's inequality, not trivial?)
$\circ=c_{\alpha} \sqrt{\sum_{j=1}^{n} h_{j}^{2}} \sum_{k=0}^{\infty}\left\|\mathcal{P}_{0} X_{k}\right\|_{\alpha}$ (by \mathcal{L}^{α} stationarity)
- By blocking, $\sum_{j=1}^{n} h_{j}^{2} \leq \sum_{k=1}^{m} \sum_{j=a_{k}}^{a_{k+1}-1} h_{j}^{2} \leq \sum_{k=1}^{m} \sum_{j=a_{k}}^{a_{k+1}-1}\left(a_{k+1}-a_{k}\right)^{4}=\sum_{k=1}^{m}\left(a_{k+1}-a_{k}\right)^{5}$
- Hence $\left\|U_{n}\right\|_{\alpha}=O(1) \sqrt{\sum_{k=1}^{m}\left(a_{k+1}-a_{k}\right)^{5}}\left(\right.$ by $\left.\sum_{i=0}^{\infty}\left\|\mathcal{P}_{0} X_{i}\right\|_{\alpha}<\infty\right)$

Proof of moment convergence: summary of techniques

Begin with martingale approximation

- Cater for dependence in time series
- Projection decomposition available as MDS $\left(X_{j}=\sum_{k=0}^{\infty} \mathcal{P}_{j-k} X_{j}\right)$
- Enable the use of ergodic theorem for moment convergence
- WLLN under dependence. Check theorem 7.12 and 7.21 in Keith's STAT4010
- Handle approximation difference with norm and little o (e.g. Y_{k} and \tilde{Y}_{k})
- MDS is uncorrelated

Handle remainder term (e.g. V_{n} vs $V_{a_{m}}$)

- By blocking and assumption on growth rate of start of block a_{m}
- Suitable for subsampling or even general time series (e.g. m-dependent)
- Allow sharper bound to be derived. See proof related to $\left\|\sum_{k=1}^{m}\left(Y_{k}-\tilde{Y}_{k}\right)\right\|_{\frac{\alpha}{2}}$. Also check lemma 1 in Liu and Wu (2010)
- Bounding a weighted sum, which may be useful for say SLLN. See proof related to U_{n}. Also check Kronecker's lemma

Convergence rate, $2<\alpha \leq 4$

Convergence rate (p.8)

Theorem 2: let $a_{k}=\left\lfloor c k^{p}\right\rfloor, k \geq 1$ where $c>0$ and $p>1$ are constants
Theorem 2.1: assume that $X_{i} \in \mathcal{L}^{\alpha}, E\left(X_{i}\right)=0$ and $\Delta_{\alpha}=\sum_{j=0}^{\infty} \delta_{\alpha}(j)<\infty$ for some $\alpha \in(2,4]$

- Then $\left\|V_{n}-E\left(V_{n}\right)\right\|_{\frac{\alpha}{2}}=O\left(n^{\frac{3}{2}-\frac{3}{2 p}+\frac{2}{\alpha}}\right)$

Theorem 2.2: assume that $X_{i} \in \mathcal{L}^{\alpha}, E\left(X_{i}\right)=0$ and $\Delta_{\alpha}=\sum_{j=0}^{\infty} \delta_{\alpha}(j)<\infty$ for some $\alpha>4$

- Then $\lim _{n \rightarrow \infty} \frac{\left\|V_{n}-E\left(V_{n}\right)\right\|}{n^{2-\frac{3}{2 p}}}=\frac{\sigma^{2} p^{2} c^{\frac{3}{2 p}}}{\sqrt{12 p-9}}$

Theorem 2.3: if $X_{i} \in \mathcal{L}^{2}, E\left(X_{i}\right)=0$ and $\sum_{j=0}^{\infty} j^{q} \omega(j)<\infty$ for some $q \in(0,1]$

- Then $E\left(V_{n}-v_{n} \sigma^{2}\right)=O\left[n^{1+(1-q)\left(1-\frac{1}{p}\right)}\right]$
- Consequently, if theorem 2.1 also holds, then $\left\|V_{n}-v_{n} \sigma^{2}\right\|_{\frac{\alpha}{2}}=O\left(n^{\phi}\right)$
- $\phi=\max \left[\frac{3}{2}-\frac{3}{2 p}+\frac{2}{\alpha}, 1+(1-q)\left(1-\frac{1}{p}\right)\right]$
- $\sum_{j=1}^{\infty} j^{a} \delta_{\alpha}(j)<\infty$ is sufficient

Optimal convergence rate (p.8)

To achieve optimal convergence, we should minimize $\phi=\max \left[\frac{3}{2}-\frac{3}{2 p}+\frac{2}{\alpha}, 1+(1-q)\left(1-\frac{1}{p}\right)\right]$

- Theorem 2 guides us to choose p based on q (dependence condition) and α (moment condition)
- A good p should minimize $n^{\frac{3}{2}-\frac{3}{2 p}+\frac{2}{\alpha}}+n^{1+(1-q)\left(1-\frac{1}{p}\right)}$, which also minimize ϕ
- Set $\frac{3}{2}-\frac{3}{2 p}+\frac{2}{\alpha}=1+(1-q)\left(1-\frac{1}{p}\right)$ and solve for p
- The rationale is that the optimal rate should be the same regardless of conditions which are hard to verify?
- We have $p=\frac{\frac{1}{2}+q}{q-\frac{1}{2}+\frac{2}{\alpha}}$ (denominator should be $q-\frac{1}{2}+\frac{2}{\alpha}$, probably typo in the paper)

Corollary 2: Let $p=\frac{\frac{1}{2}+q}{q-\frac{1}{2}+\frac{2}{\alpha}}$. Under conditions of theorem 2, $\left\|\frac{V_{n}}{v_{n}}-\sigma^{2}\right\|_{\frac{\alpha}{2}}=O\left(n^{\frac{2}{\alpha}-\frac{1}{2}-\frac{1}{2 p}}\right)$

- In particular, if $\alpha=4$ and $q=1$, then $p=\frac{3}{2}$ and $\left\|\frac{V_{n}}{v_{n}}-\sigma^{2}\right\|_{2}=O\left(n^{-\frac{1}{3}}\right)$

Convergence rate when $\mu \neq 0$ (p.9)

Note that $v_{n} \sim v_{a_{m}} \sim \frac{1}{2} \sum_{i=2}^{m}\left(a_{i}-a_{i-1}\right)^{2}$ (by blocking)

- $\sim \frac{1}{2} \sum_{i=2}^{m} c^{2} p^{2} i^{2 p-2}$ (by considering the differential $a_{i}-a_{i-1} \sim c p i^{p-1}$)
- $\sim \frac{c^{2} p^{2} m^{2 p-1}}{4 p-2}$ (by approximating sum $\Sigma_{x=2}^{m}$ with integral $\int_{2}^{m} d x$)
- $\sim \frac{c^{\frac{1}{p}} p^{2}}{4 p-2} n^{2-\frac{1}{p}}=O\left(n^{2-\frac{1}{p}}\right)\left(\right.$ by $\left.n \sim c m^{p} \Rightarrow m \sim\left(\frac{n}{c}\right)^{\frac{1}{p}}\right)$

Corollary 2 also applies to $\frac{V_{n}^{\prime}}{v_{n}}$ since $\frac{1}{v_{n}}\left\|V_{n}-V_{n}^{\prime}\right\|_{\frac{\alpha}{2}}=O\left(n^{-\frac{1}{p}}\right)$ and $-\frac{1}{p}<\frac{2}{\alpha}-\frac{1}{2}-\frac{1}{2 p}$

- This implies the difference $V_{n}-V_{n}^{\prime}$ cannot be the dominating term
- See remark 4 in paper for proof of $\frac{1}{v_{n}}\left\|V_{n}-V_{n}^{\prime}\right\|_{\frac{\alpha}{2}}$

Proof of theorem 2.1:

$\left\|V_{n}-E\left(V_{n}\right)\right\|_{\frac{\alpha}{2}}=O\left(n^{\frac{3}{2}-\frac{3}{2 p}+\frac{2}{\alpha}}\right)(\mathrm{p} .17-18)$

Recall $V_{n}=\sum_{i=1}^{n} W_{i}^{2}$. Note that $\left\|V_{n}-E\left(V_{n}\right)\right\|_{\frac{\alpha}{2}} \leq\left\|\sum_{i=1}^{n} W_{i}^{2}\right\|_{\frac{\alpha}{2}}$ (V_{n} is non-negative)
$\circ=\left\|\sum_{i=1}^{n} \sum_{k=0}^{\infty} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}\left(\right.$ by $\left.W_{i}^{2}=\sum_{k=0}^{\infty} \mathcal{P}_{i-k} W_{i}^{2}\right)$

- $\leq \sum_{k=0}^{\infty}\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}$ (by Minkowski inequality)
- It suffices to find the order of $\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}$

Blocking: let $b_{m}=\left\lfloor(1+c) p 2^{p} m^{p-1}\right\rfloor$

- It can be shown that $i-t_{i} \leq a_{m+1}-1-a_{m} \leq b_{m} \forall m \in \mathbb{N}$
- Obviously the functional of b_{m} is chosen by solving this inequality
- This also means that b_{m} is the bound of block size and batch size
- $\sum_{k=0}^{\infty}\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}=\sum_{k=2 b_{m}}^{\infty}\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}+\sum_{k=0}^{2 b_{m}-1}\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}$

Proof of theorem 2.1:

bound of $\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}(\mathrm{p} .17)$

Recall that $W_{i}=X_{t_{i}}+X_{t_{i}+1}+\cdots+X_{i}$. Let $W_{i}^{*}=X_{t_{i}}^{\prime}+X_{t_{i}+1}^{\prime}+\cdots+X_{i}^{\prime}$ (coupled batch sum)

- Since $\epsilon_{0}^{\prime} \perp \epsilon_{i}, i \in \mathbb{Z}$, we have $E\left(X_{i} \mid \mathcal{F}_{-1}\right)=E\left(X_{i}^{\prime} \mid \mathcal{F}_{-1}\right)=E\left(X_{i}^{\prime} \mid \mathcal{F}_{0}\right)$
- Stability assumption $\Delta_{\alpha}<\infty$ implies weak stability $\Theta_{\alpha}<\infty$
- By theorem 1 in Wu (2007), $\left\|W_{i}\right\|_{\alpha} \leq c_{\alpha} \Theta_{\alpha} \sqrt{i-t_{i}+1}$ (moment inequality)
- Now $\left\|\mathcal{P}_{0} W_{i}^{2}\right\|_{\frac{\alpha}{2}}=\left\|E\left(W_{i}^{2} \mid \mathcal{F}_{0}\right)-E\left(W_{i}^{2} \mid \mathcal{F}_{-1}\right)\right\|_{\frac{\alpha}{2}}$ (definition of projection)
$\circ=\left\|E\left(W_{i}^{2} \mid \mathcal{F}_{0}\right)-E\left[\left(W_{i}^{*}\right)^{2} \mid \mathcal{F}_{0}\right]\right\|_{\frac{\alpha}{2}}$ (property of coupled batch sum)
- $\leq\left\|W_{i}^{2}-\left(W_{i}^{*}\right)^{2}\right\|_{\frac{\alpha}{2}}$ (by Jensen's inequality and tower property)
- $\leq\left\|W_{i}+W_{i}^{*}\right\|_{\alpha}\left\|W_{i}-W_{i}^{*}\right\|_{\alpha}$ (by Cauchy-Schwarz inequality)
- $\leq 2\left\|W_{i}\right\|_{\alpha} \sum_{j=t_{i}}^{i} \delta_{\alpha}(j)$ (property of coupled batch sum and definition of physical dependence)
- $\leq 2 c_{\alpha} \Theta_{\alpha} \sqrt{i-t_{i}+1} \sum_{j=t_{i}}^{i} \delta_{\alpha}(j)$ (by moment inequality)

Proof of theorem 2.1:

bound of $\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$ (p.17)

Similarly for $k \geq 0,\left\|\mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}} \leq 2 c_{\alpha} \Theta_{\alpha} \sqrt{i-t_{i}+1} \sum_{j=t_{i}}^{i} \delta_{\alpha}\left(k+t_{i}-j\right)$

- Note that $\mathcal{P}_{i-k} W_{i}^{2}, i \in \mathbb{Z}$ form MDS, so $\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$
${ }^{\circ} \leq c_{\alpha} \sum_{i=1}^{n}\left\|\mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$ (by Burkholder's inequality)
- $\leq c_{\alpha} \Theta_{\alpha}^{\frac{\alpha}{2}} \sum_{i=1}^{n}\left[\sqrt{i-t_{i}+1} \sum_{j=t_{i}}^{i} \delta_{\alpha}\left(k+t_{i}-j\right)\right]^{\frac{\alpha}{2}}$ (by moment inequality)

Proof of theorem 2.1:

$\left\|V_{n}-E\left(V_{n}\right)\right\|_{\frac{\alpha}{2}}=O\left(n^{\frac{3}{2}-\frac{3}{2 p}+\frac{2}{\alpha}}\right)(\mathrm{p} .18)$

Consider first term from blocking $\sum_{k=0}^{\infty}\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\| \frac{\alpha}{2}, \sum_{k=2 b_{m}}^{\infty}\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}$
$\circ \leq O(1) \sum_{k=2 b_{m}}^{\infty}\left\{\sum_{i=1}^{n}\left[\sqrt{i-t_{i}+1} \sum_{j=0}^{b_{m}} \delta_{\alpha}(k-j)\right]^{\frac{\alpha}{2}}\right\}^{\frac{2}{\alpha}}$ (by moment inequality in last slide)

- The summation index can be change since $i-t_{i} \leq b_{m}$ and $k-b_{m}>0$
$\circ \leq O(1)\left[\sum_{i=1}^{n}\left(i-t_{i}+1\right)^{\frac{\alpha}{4}}\right]^{\frac{2}{\alpha}} \sum_{k=2 b_{m}}^{\infty} \sum_{j=0}^{b_{m}} \delta_{\alpha}(k-j)$ (by independence of summation index)
- The inequality sign in this step should be equal?
$\circ=O\left(n^{\frac{2}{\alpha}} b_{m}^{\frac{1}{2}}\right) o\left(b_{m}\right)\left(\right.$ by $i-t_{i} \leq b_{m}$ and $\left.\Delta_{\alpha}=\sum_{j=0}^{\infty} \delta_{\alpha}(j)<\infty\right)$
- $=o\left(n^{\frac{2}{\alpha}} b_{m}^{\frac{3}{2}}\right)$
$\circ=o\left(n^{\frac{2}{\alpha}+\frac{3}{2}-\frac{3}{2 p}}\right)\left(\right.$ since $\left.b_{m}=O\left(m^{\frac{1}{p}}\right)=O\left(n^{1-\frac{1}{p}}\right)\right)$

Proof of theorem 2.1:

$$
\left\|V_{n}-E\left(V_{n}\right)\right\|_{\frac{\alpha}{2}}=O\left(n^{\frac{3}{2}-\frac{3}{2 p}+\frac{2}{\alpha}}\right)(\mathrm{p} .18)
$$

Consider second term from blocking, $\sum_{k=0}^{2 b_{m}-1}\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}$

$$
\begin{aligned}
& \circ \leq O(1)\left[\sum_{i=1}^{n}\left(i-t_{i}+1\right)^{\frac{\alpha}{4}}\right]^{\frac{2}{\alpha}} \sum_{k=0}^{2 b_{m}-1} \sum_{j=t_{i}}^{i} \delta_{\alpha}\left(k+t_{i}-j\right) \text { (same steps as last slide) } \\
& \circ=\left[\sum_{i=1}^{n}\left(i-t_{i}+1\right)^{\frac{\alpha}{4}}\right]^{\frac{2}{\alpha}} O\left(b_{m}\right) \text { (use big } 0 \text { because summation index cannot be changed) } \\
& \circ=O\left(n^{\frac{2}{\alpha}+\frac{3}{2}-\frac{3}{2 p}}\right) \text { (same steps as last slide) }
\end{aligned}
$$

Hence $\sum_{k=0}^{\infty}\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}=o\left(n^{\frac{2}{\alpha}+\frac{3}{2}-\frac{3}{2 p}}\right)+O\left(n^{\frac{2}{\alpha}+\frac{3}{2}-\frac{3}{2 p}}\right)$
$-O\left(n^{\frac{2}{\alpha}+\frac{3}{2}-\frac{3}{2 p}}\right)+O\left(n^{\frac{2}{\alpha}+\frac{3}{2}-\frac{3}{2 p}}\right)$ (little o implies big 0)

- $=O\left(n^{\frac{2}{\alpha}+\frac{3}{2}-\frac{3}{2 p}}\right)$

Proof of theorem 2.1: summary of techniques

Asymptotic approximation

- Approximate finite difference and sum by differential and integral
- Be aware of the definition of Riemann sum (e.g. you may need to perform change of variable)
- Identify the dominating term
- Blocking: relate number of blocks m with sample size n

Handle multiple sum

- By blocking and bounding each block size
- Terms in a double sum may becomes independent. See last two slides
- Break down power into product with maximum
- E.g. $\sum_{t=1}^{n} t^{p} \leq\left(\max _{1 \leq t \leq n} t\right) \sum_{t=1}^{n} t^{p-1}$

Proof of theorem 2.2: $\lim _{n \rightarrow \infty} \frac{\left\|V_{n}-E\left(V_{n}\right)\right\|}{n^{2-\frac{3}{2 p}}}=\frac{\sigma^{2} p^{2} c^{\frac{3}{2 p}}}{\sqrt{12 p-9}}$ (p.20)

Notice that the condition changes from $\Delta_{\alpha}<\infty$ for some $\alpha \in(2,4]$ (T2.1) to $\alpha>4$ (T2.2)

- But the convergence rate is same for $\alpha=4$ (T2.1) and $\alpha>4$ (T2.2)
- This means stronger moment conditions cannot give faster convergence rate. See moment inequality (previous slide p.20)
- Theorem 2.2 gives a close form of asymptotic MSE (AMSE) though
- $\left\|V_{n}-E\left(V_{n}\right)\right\|=\sqrt{E\left|V_{n}-E\left(V_{n}\right)\right|^{2}}$, which can give us MSE after some modifications
- Proof of T2.2 requires the use of lemma 1, which we shall prove later

Lemma 1: assume $X_{i} \in \mathcal{L}^{\alpha}, E\left(X_{i}=0\right)$ and $\Delta_{\alpha}<\infty$ for $\alpha>4$ (conditions of T2.2)

- Let $S_{i}=\sum_{j=1}^{i} X_{j}$ (the subscript should be j, probably typo in the paper)
- Then $\left\|\sum_{i=1}^{l}\left[E\left(S_{i}^{2} \mid \mathcal{F}_{1}\right)-E\left(S_{i}^{2}\right)\right]\right\|=o\left(l^{2}\right)$
- We also have $\lim _{l \rightarrow \infty} \frac{1}{l^{4}}\left\|\sum_{i=1}^{l}\left[S_{i}^{2}-E\left(S_{i}^{2}\right)\right]\right\|^{2}=\frac{1}{3} \sigma^{4}$

Proof of theorem 2.2: $\lim _{n \rightarrow \infty} \frac{\left\|V_{n}-E\left(V_{n}\right)\right\|}{n^{2-\frac{3}{2 p}}}=\frac{\sigma^{2} p^{2} c^{\frac{3}{2 p}}}{\sqrt{12 p-9}}$ (p.18)

Let block sum of square $G_{h+1}=\sum_{i=a_{h}}^{a_{h+1}-1} W_{i}^{2}$ (target is $V_{a_{m+1}}=\sum_{h=1}^{m} G_{h+1}$)

- It differs from \tilde{Y}_{k} in the sense that martingale approximation is not used
- By lemma 1, $\lim _{h \rightarrow \infty} \frac{1}{\left(a_{h+1}-a_{h}\right)^{4}}\left\|G_{h+1}-E\left(G_{h+1} \mid \mathcal{F}_{a_{h}}\right)\right\|^{2}=\frac{1}{3} \sigma^{4}$
- Since $G_{h+1}-E\left(G_{h+1} \mid \mathcal{F}_{a_{h}}\right)$ is MDS wrt $\mathcal{F}_{a_{h+1}}$, we have $\left\|\sum_{h=1}^{m}\left[G_{h+1}-E\left(G_{h+1} \mid \mathcal{F}_{a_{h}}\right)\right]\right\|^{2}$
$\circ=\sum_{h=1}^{m} E\left|G_{h+1}-E\left(G_{h+1} \mid \mathcal{F}_{a_{h}}\right)\right|^{2}$ (MDS is uncorrelated)
- $\sim \frac{1}{3} \sigma^{4} \sum_{h=1}^{m}\left(a_{h+1}-a_{h}\right)^{4}$ (by lemma 1)
- $\sim \frac{1}{3} \sigma^{4} \sum_{h=1}^{m} c^{4} p^{4} h^{4 p-4}$ (by considering the differential $a_{h}-a_{h-1} \sim c p h^{p-1}$)
- $\sim \frac{p^{4} c^{4}}{3(4 p-3)} m^{4 p-3} \sigma^{4}$ (by approximating sum $\sum_{x=1}^{m}$ with integral $\int_{1}^{m} d x$)
- $\sim \frac{p^{4} c^{\frac{3}{p}}}{12 p-9} n^{4-\frac{3}{p}} \sigma^{4}\left(\right.$ by $\left.n \sim c m^{p} \Rightarrow m \sim\left(\frac{n}{c}\right)^{\frac{1}{p}}\right)$

Proof of theorem 2.2: $\lim _{n \rightarrow \infty} \frac{\left\|V_{n}-E\left(V_{n}\right)\right\|}{n^{2-\frac{3}{2 p}}}=\frac{\sigma^{2} p^{2} c^{\frac{3}{2 p}}}{\sqrt{12 p-9}}$ (p.18-19)

Similarly, $\left\|\sum_{h=1}^{m}\left[E\left(G_{h+1} \mid \mathcal{F}_{a_{h}}\right)-E\left(G_{h+1} \mid \mathcal{F}_{a_{h-1}}\right)\right]\right\|^{2}$
$\circ=\sum_{h=1}^{m} E\left|E\left(G_{h+1} \mid \mathcal{F}_{a_{h}}\right)-E\left(G_{h+1} \mid \mathcal{F}_{a_{h-1}}\right)\right|^{2}$ (MDS is uncorrelated)
。 $\leq \sum_{h=1}^{m} E\left|E\left(G_{h+1} \mid \mathcal{F}_{a_{h}}\right)-E\left(G_{h+1}\right)\right|^{2}$ (by towering and Eve's law)
。 $=\sum_{h=1}^{m} o\left[\left(a_{h+1}-a_{h}\right)^{4}\right]=o\left(n^{4-\frac{3}{p}}\right)$ (by lemma 1 and result in last slide)
Now deal with $\Xi_{m} \xlongequal{\text { def }} \sum_{h=1}^{m}\left[E\left(G_{h+1} \mid \mathcal{F}_{a_{h-1}}\right)-E\left(G_{h+1}\right)\right]$

- The goal of Ξ_{m} is to connect everything for $\left\|\sum_{h=1}^{m}\left[G_{h+1}-E\left(G_{h+1}\right)\right]\right\|=\left\|V_{a_{m}}-E\left(V_{a_{m}}\right)\right\|$
- Since $E\left(W_{i}^{2} \mid \mathcal{F}_{a_{h-1}}\right)-E\left(W_{i}^{2}\right)=\sum_{k=0}^{\infty} \mathcal{P}_{i-k} E\left(W_{i}^{2} \mid \mathcal{F}_{a_{h-1}}\right)$ for $a_{h} \leq i<a_{h+1}$
- This follows from definition of projection and tower property
- We have $\left\|\Xi_{m}\right\| \leq \sum_{k=0}^{\infty}\left\|\sum_{h=1}^{m} \sum_{i=a_{h}}^{a_{h+1}-1} \mathcal{P}_{i-k} E\left(W_{i}^{2} \mid \mathcal{F}_{a_{h-1}}\right)\right\|$ (by Minkowski inequality) $\circ=\sum_{k=0}^{\infty} \sqrt{\sum_{h=1}^{m} \sum_{i=a_{h}}^{a_{h+1}-1} E\left|\mathcal{P}_{i-k} E\left(W_{i}^{2} \mid \mathcal{F}_{a_{h-1}}\right)\right|^{2}}$ (by linearity of expectation and property of MDS)

Proof of theorem 2.2: $\lim _{n \rightarrow \infty} \frac{\left\|V_{n}-E\left(V_{n}\right)\right\|}{n^{2-\frac{3}{2 p}}}=\frac{\sigma^{2} p^{2} c^{\frac{3}{2 p}}}{\sqrt{12 p-9}}$ (p.19)

Observe that $\mathcal{P}_{i-k} E\left(W_{i}^{2} \mid \mathcal{F}_{a_{h-1}}\right)=\left\{\begin{array}{r}0, i-k>a_{h-1} \\ \mathcal{P}_{i-k} W_{i}^{2}, i-k \leq a_{h-1}\end{array}\right.$ (by property of projection)

- Hence $\sum_{k=2 b_{m}}^{\infty} \sqrt{\sum_{h=1}^{m} \sum_{i=a_{h}}^{a_{h+1}-1} E\left|\mathcal{P}_{i-k} E\left(W_{i}^{2} \mid \mathcal{F}_{a_{h-1}}\right)\right|^{2}}$
- $\leq O(1) \sum_{k=2 b_{m}}^{\infty} \sqrt{\sum_{h=1}^{m} \sum_{i=a_{h}}^{a_{h+1}-1}\left(i-t_{i}+1\right)\left[\sum_{j=0}^{b_{m}} \delta_{4}(j)\right]^{2}}$ (mimic proof of $\sum_{k=2 b_{m}}^{\infty}\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}$)
$\circ=O\left(n^{\frac{1}{2}} b_{m}^{\frac{1}{2}}\right) o\left(b_{m}\right)=o\left(n^{2-\frac{3}{2 p}}\right)$ (mimic proof of $\sum_{k=2 b_{m}}^{\infty}\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}$

Proof of theorem 2.2: $\lim _{n \rightarrow \infty} \frac{\left\|V_{n}-E\left(V_{n}\right)\right\|}{n^{2-\frac{3}{2 p}}}=\frac{\sigma^{2} p^{2} c^{\frac{3}{2 p}}}{\sqrt{12 p-9}}$ (p.19)

Now consider $\sum_{k=0}^{2 b_{m}-1} \sqrt{\sum_{h=1}^{m} \sum_{i=a_{h}}^{a_{h+1}-1} E\left|\mathcal{P}_{i-k} E\left(W_{i}^{2} \mid \mathcal{F}_{a_{h-1}}\right)\right|^{2}}$

$$
\begin{aligned}
& \left.\circ \leq O(1) \sum_{k=2 b_{m}}^{\infty} \sqrt{\sum_{h=1}^{m} \sum_{i=a_{h}}^{a_{n+1}-1}\left(i-t_{i}+1\right)\left[\sum_{j=k+t_{i}-i}^{i} \delta_{4}(j)\right]^{2} \mathbb{I}\left(i-k \leq a_{h-1}\right)} \text { (mimic proof of }\left\|\mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}\right) \\
& \circ=O(1) \sum_{k=2 b_{m}}^{\infty} \sqrt{\sum_{h=1}^{m} \sum_{i=a_{h}}^{a_{h+1}-1}\left(i-t_{i}+1\right) \Delta_{4}^{2}\left(a_{h}-a_{h-1}\right)}(\text { by definition of stability, not multiply!) } \\
& \circ=O(1) \sum_{k=2 b_{m}}^{\infty} \sqrt{\sum_{h=1}^{m}\left(a_{h+1}-a_{h}\right)^{2} \Delta_{4}^{2}\left(a_{h}-a_{h-1}\right)}(\text { by blocking) } \\
& \circ=O(1) \sum_{k=2 b_{m}}^{\infty} \sqrt{\sum_{h=1}^{m}\left(a_{h+1}-a_{h}\right)^{2} o(1)}\left(\text { by } \Delta_{4}^{2}\left(a_{h}-a_{h-1}\right) \rightarrow 0 \text { as } a_{h}-a_{h-1} \rightarrow \infty\right) \\
& \circ=O(1) \sum_{k=2 b_{m}}^{\infty} \sqrt{\sum_{h=1}^{m} o\left(h^{2 p-2}\right)}\left(\text { by } a_{h}-a_{h-1}=O\left(h^{p-1}\right)\right) \\
& \circ=o\left(b_{m} m^{p-\frac{1}{2}}\right)=o\left(n^{2-\frac{3}{2 p}}\right)\left(\text { by } b_{m}=O\left(n^{1-\frac{1}{p}}\right) \text { and } m \sim\left(\frac{n}{c}\right)^{\frac{1}{p}}\right)
\end{aligned}
$$

Proof of theorem 2.2: $\lim _{n \rightarrow \infty} \frac{\left\|V_{n}-E\left(V_{n}\right)\right\|}{n^{2-\frac{3}{2 p}}}=\frac{\sigma^{2} p^{2} c^{\frac{3}{2 p}}}{\sqrt{12 p-9}}$ (p.19)

We have proved $\lim _{n \rightarrow \infty} \frac{\left\|\sum_{n=1}^{m}\left[G_{h+1}-E\left(G_{h+1} \mid \mathcal{F}_{a_{h}}\right)\right]\right\|}{n^{2-\frac{3}{2 p}}}=\frac{\sigma^{2} p^{2} c^{\frac{3}{2 p}}}{\sqrt{12 p-9}}$ (four slides ago)

$$
\circ\left\|\sum_{h=1}^{m}\left[G_{h+1}-E\left(G_{h+1} \mid \mathcal{F}_{a_{h}}\right)\right]\right\|=\left\|\sum_{n=1}^{m}\left[G_{h+1}-E\left(G_{h+1}\right)\right]\right\|=\left\|V_{a_{m+1}}-E\left(V_{a_{m+1}}\right)\right\| \text { (last three slides) }
$$

- It remains to show that $\left\|V_{a_{m+1}}-E\left(V_{a_{m+1}}\right)\right\|=\left\|V_{n}-E\left(V_{n}\right)\right\|$
- Now consider the remainder term $\left\|\sum_{i=n}^{a_{m+1}-1}\left[W_{i}^{2}-E\left(W_{i}^{2}\right)\right]\right\|$
- $\leq \sum_{i=n}^{a_{m+1}-1}\left\|W_{i}^{2}-E\left(W_{i}^{2}\right)\right\|$ (by Minkowski inequality)
- $\leq \sum_{i=n}^{a_{m+1}-1}\left\|W_{i}^{2}\right\|$ (since W_{i}^{2} is non negative)
- $=O\left(b_{m}^{2}\right)$ (recall the sum is a isosceles triangular shaped)
$\circ=O\left(n^{2-\frac{2}{p}}\right) \ll o\left(n^{2-\frac{3}{2 p}}\right)\left(\right.$ by $b_{m}=o\left(n^{1-\frac{1}{p}}\right)$ and $\left.p>1\right)$

Proof of lemma 1: $\left\|\sum_{i=1}^{l}\left[E\left(S_{i}^{2} \mid \mathcal{F}_{1}\right)-E\left(S_{i}^{2}\right)\right]\right\|=o\left(l^{2}\right)(\mathrm{p} .20)$

Recall $S_{i}=\sum_{j=1}^{i} X_{j}$. Mimicking proof of $\left\|\mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}$, we have

- $\left\|\mathcal{P}_{r} S_{i}^{2}\right\| \leq C \sqrt{i} \sum_{j=1}^{i} \delta_{2}(j-r)$ for $r \leq 1$ where $C=2 c_{2} \Theta_{2}$
- Since $\sum_{i=1}^{l}\left[E\left(S_{i}^{2} \mid \mathcal{F}_{1}\right)-E\left(S_{i}^{2}\right)\right]=\sum_{r=-\infty}^{1} \sum_{i=1}^{l} \mathcal{P}_{r} S_{i}^{2}$ (definition of projection), we have
- $\left\|\sum_{i=1}^{l}\left[E\left(S_{i}^{2} \mid \mathcal{F}_{1}\right)-E\left(S_{i}^{2}\right)\right]\right\|^{2}=\sum_{r=-\infty}^{1}\left\|\sum_{i=1}^{l} \mathcal{P}_{r} S_{i}^{2}\right\|^{2}$ (MDS is uncorrelated)
- $\leq \sum_{r=-\infty}^{1}\left(\sum_{i=1}^{l}\left\|\mathcal{P}_{r} S_{i}^{2}\right\|\right)^{2}$ (by Minkowski inequality)

。 $\leq \sum_{r=-\infty}^{1}\left(C l^{\frac{3}{2}} \sum_{j=1}^{l} \delta_{2}(j-r)\right)^{2}$ (by inequality above and bounding $\sum_{j=1}^{i} \delta_{2}(j-r)$ with $l \delta_{2}(j-r)$)

- Is it possible that $\sum_{j=1}^{i} \delta_{2}(j-r)>l \Rightarrow \sum_{i=1}^{l} \sum_{j=1}^{i} \delta_{2}(j-r)>l \sum_{j=1}^{l} \delta_{2}(j-r)$? Then this step do not hold
- However the result is still correct by considering $\sum_{i=1}^{l} \sum_{j=1}^{i} \delta_{2}(j-r) \leq\left[\sum_{j=1}^{l} \delta_{2}(j-r)\right]^{2}$
- $\leq C^{2} l^{3} \Delta_{2} \sum_{j=1}^{l} \sum_{r=-\infty}^{1} \delta_{2}(j-r)\left(\right.$ by $\left.\left[\sum_{j=1}^{l} \delta_{2}(j-r)\right]^{2} \leq \Delta_{2} \sum_{j=1}^{l} \delta_{2}(j-r)\right)$
- $=O\left(l^{3}\right) o(l)=o\left(l^{4}\right)\left(\right.$ by $\Delta_{\alpha}<\infty$ for $\left.\alpha>4\right)$

Proof of lemma 1:

$\lim _{l \rightarrow \infty} \frac{1}{l^{4}}\left\|\sum_{i=1}^{l}\left[S_{i}^{2}-E\left(S_{i}^{2}\right)\right]\right\|^{2}=\frac{1}{3} \sigma^{4}$ (p.21)

Let $A_{l}=\frac{1}{l^{2}} \sum_{i=1}^{l} S_{i}^{2}$. By invariance principle and continuous mapping theorem,

- $A_{l} \xrightarrow{d} \sigma^{2} \int_{0}^{1} W_{t}^{2} d t$ (continuous mapping changes sum to integral, probably typo for IB)
- By theorem 1 in Wu (2007), $\left\|S_{i}\right\|_{\alpha}=O(\sqrt{i})$ (moment inequality)
- Hence $\left\|A_{l}\right\|_{\frac{\alpha}{2}} \leq \frac{1}{l^{2}} \sum_{i=1}^{l}\left\|S_{i}^{2}\right\|_{\frac{\alpha}{2}}$ (by Minkowski inequality)
- $\leq \frac{1}{l^{2}} \sum_{i=1}^{l}\left\|S_{i}\right\|_{\alpha}^{2}$ (by definition of norm, should be equal?)
- $=\frac{1}{l^{2}} \sum_{i=1}^{l} O(i)=O(1)$ (by moment inequality)
- Since $\frac{\alpha}{2}>2$, $\left\{\left[A_{l}-E\left(A_{l}\right)\right]^{2}, l \geq 1\right\}$ is uniformly integrable (Chow and Teicher, 1988)
- Hence weak convergence of A_{l} implies the \mathcal{L}^{2} moment convergence, which is
- $E\left\{\left[A_{l}-E\left(A_{l}\right)\right]^{2}\right\} \rightarrow \sigma^{4} E\left\{\int_{0}^{1}\left[W_{t}^{2}-E\left(W_{t}^{2}\right)\right] d t\right\}^{2}=\frac{1}{3} \sigma^{4}$ (by stochastic calculus, not trivial...)

Proof of lemma 1:

$E\left\{\int_{0}^{1}\left[W_{t}^{2}-E\left(W_{t}^{2}\right)\right] d t\right\}^{2}=\frac{1}{3}$

Let $f(t, w)=\frac{1}{6} w^{4}$. We have $\frac{\partial f}{\partial t}=0, \frac{\partial f}{\partial w}=\frac{2}{3} w^{3}$ and $\frac{\partial^{2} f}{\partial w^{2}}=2 w^{2}$. Note that $\mu=0$ and $\sigma=1$.

- $d f\left(t, W_{t}\right)=\left[\frac{\partial f}{\partial t}+\mu \frac{\partial f}{\partial W_{t}}+\frac{1}{2} \sigma^{2} \frac{\partial^{2} f}{\partial W_{t}^{2}}\right] d t+\sigma \frac{\partial f}{\partial W_{t}} d W_{t}=W_{t}^{2} d t+\frac{2}{3} W_{t}^{3} d W_{t}$ (by Itô's lemma)
- Rearranging the terms, $\int_{0}^{1} W_{t}^{2} d t=\frac{1}{6} W_{1}^{4}-\frac{2}{3} \int_{0}^{1} W_{t}^{3} d W_{t}=\frac{1}{2}+\sqrt{\frac{1}{3}} Z$ where $Z \sim N(0,1)$
- $E\left(\int_{0}^{1} W_{t}^{2} d t\right)=\frac{1}{6} E\left(W_{1}^{4}\right)=\frac{3!!}{6}=\frac{1}{2}$ (by martingale property and $E\left(X^{2 n}\right)=\sigma^{2 n}(2 n-1)!!$ if $X \sim N\left(0, \sigma^{2}\right)$. See this $Q \& A$)
- $E\left[\left(\int_{0}^{1} W_{t}^{2} d t\right)^{2}\right]=E\left(\int_{0}^{1} \int_{0}^{1} W_{t}^{2} W_{s}^{2} d t d s\right)=\int_{0}^{1} \int_{0}^{1} E\left(W_{t}^{2} W_{s}^{2}\right) d t d s$ (by Fubini's theorem)

。 $=\int_{0}^{1} \int_{0}^{s} E\left[\left(W_{s}-W_{t}\right)^{2} W_{t}^{2}+2\left(W_{s}-W_{t}\right) W_{t}^{3}+W_{t}^{4}\right] d t d s+\int_{0}^{1} \int_{s}^{1} E\left[\left(W_{t}-W_{s}\right)^{2} W_{s}^{2}+2\left(W_{t}-W_{s}\right) W_{s}^{3}+W_{s}^{4}\right] d t d s$
。 $=\int_{0}^{1} \int_{0}^{s}\left[(s-t) t+3 t^{2}\right] d t d s+\int_{0}^{1} \int_{s}^{1}\left[(t-s) s+3 s^{2}\right] d t d s$ (by independent increment and $E\left(X^{2 n+1}\right)=0$ if $X \sim N\left(0, \sigma^{2}\right)$)

- $=\frac{7}{24}+\frac{7}{24}=\frac{7}{12}$, so $\operatorname{Var}\left(\int_{0}^{1} W_{t}^{2} d t\right)=\frac{7}{12}-\frac{1}{4}=\frac{1}{3}$
- On the other hand, $\int_{0}^{1} E\left(W_{t}^{2}\right) d t=\int_{0}^{1} t d t=\frac{1}{2}\left(\right.$ since $\left.W_{t} \sim N(0, t)\right)$
- Hence using representation, $E\left\{\int_{0}^{1}\left[W_{t}^{2}-E\left(W_{t}^{2}\right)\right] d t\right\}^{2}=E\left(\frac{1}{3} Z^{2}\right)=\frac{1}{3}$

Proof of theorem 2.2 and lemma 1: summary of techniques

Stochastic calculus (my RMSC5102 note has a quick summary)

- Useful when we combine invariance principle and continuous mapping theorem
- Break down product of wiener process into sum of independent increment (see last slide)
- Vitali convergence theorem: a sequence of random variables converging in probability also converge in the mean if and only if they are uniformly integrable
- A class of random variables bounded in $L^{p}, p>1$ is uniformly integrable (see two slides ago)
- See Theorem 5.5.2 in Probability Theory and Examples by Durrett

Convergence rate, $\alpha=2$

SECTION 3.2.3

Proof of theorem 2.3:

$E\left(V_{n}-v_{n} \sigma^{2}\right)=O\left[n^{1+(1-q)\left(1-\frac{1}{p}\right)}\right](\mathrm{p} .20)$

We do not have moment inequality when $\alpha=2$ (i.e. in \mathcal{L}^{1}). Alternative strategy is needed.

- Let $j>0$. To bound the autocovariance, we have $|\gamma(j)|=\left|E\left(X_{0} X_{j}\right)\right|$

。 $=\left|E\left[\sum_{i \in \mathbb{Z}}\left(\mathcal{P}_{i} X_{0}\right)\left(\mathcal{P}_{i} X_{j}\right)\right]\right|$ (projection decomposition, $\left.X_{j}=\sum_{i \in \mathbb{Z}} \mathcal{P}_{i} X_{j}\right)$

- $\leq \sum_{i \in \mathbb{Z}} E\left|\left(\mathcal{P}_{i} X_{0}\right)\left(\mathcal{P}_{i} X_{j}\right)\right|$ (by Minkowski inequality)
- $\leq \sum_{i \in \mathbb{Z}}\left\|\left(\mathcal{P}_{i} X_{0}\right)\right\|\left\|\left(\mathcal{P}_{i} X_{j}\right)\right\|$ (by Cauchy-Schwarz inequality)
- Orthogonality of projection gives a equal sign here but it does not affect the result
- $\leq \sum_{i=0}^{\infty} \omega(i) \omega(i+j)\left(\right.$ by $\left\|\mathcal{P}_{0} X_{i}\right\|_{p} \leq \omega_{p}(i)$ and $\omega_{p}(i)=0$ if $\left.i<0\right)$

For $S_{l}=X_{1}+\cdots+X_{l}$, since $\sum_{j=0}^{\infty} j^{q} \omega(j)<\infty$ for some $q \in(0,1]$ (by assumption)

- We have $\left|E\left(S_{l}^{2}\right)-l \sigma^{2}\right|=\left|l \gamma(0)+2 \sum_{j=1}^{l}(l-j) \gamma(j)-l \sum_{j \in \mathbb{Z}} \gamma(j)\right|$ (by representation of TAVC)
- $\leq 2 \sum_{j=1}^{\infty} \min (j, l)|\gamma(j)|$ (by Minkowski inequality)
- $\leq 2 \sum_{j=1}^{\infty} \min (j, l)^{1-q} \sum_{i=0}^{\infty} \min (j, l)^{q} \omega(i) \omega(i+j)=O\left(l^{1-q}\right)\left(\right.$ by $\left.\sum_{j=0}^{\infty} j^{q} \omega(j)<\infty\right)$

Proof of theorem 2.3:

$E\left(V_{n}-v_{n} \sigma^{2}\right)=O\left[n^{1+(1-q)\left(1-\frac{1}{p}\right)}\right](\mathrm{p} .20)$

Combining the results, we have $\left|E\left(V_{n}-v_{n} \sigma^{2}\right)\right|$ (t_{n} should be v_{n}, probably typo)

- $\leq \sum_{i=1}^{n}\left|E\left(W_{i}\right)-\left(i-t_{i}+1\right) \sigma^{2}\right|$ (by Minkowski inequality)
- $=\sum_{i=1}^{n} O\left[\left(i-t_{i}+1\right)^{1-q}\right]\left(\right.$ by $\left.\left|E\left(S_{l}^{2}\right)-l \sigma^{2}\right|=O\left(l^{1-q}\right)\right)$
- $=O\left(n b_{m}^{1-q}\right)$ (since b_{m} is the bound of batch size)
- $=O\left[n^{1+(1-q)\left(1-\frac{1}{p}\right)}\right]_{\left(\text {by } b_{m}\right.}=O\left(n^{1-\frac{1}{p}}\right)$)

Proof of theorem 2.3: summary of techniques

Moment inequality is not available in \mathcal{L}^{1}

- Bound the target using projection decomposition and Wu's dependence measures
- The polynomial decay rate of stability determines convergence rate

SECTION 3.3

Almost sure convergence

Almost sure convergence (p.9)

Glynn and Whitt (1992) argued that strongly consistent estimate of σ is needed

- For asymptotic validity of sequential confidence intervals
- Hence we need to consider the almost sure convergence behaviour for MCMC application

Corollary 3: Under the conditions in corollary 2,

- i.e. choose $a_{k}=\left\lfloor c k^{p}\right\rfloor, p=\frac{\frac{1}{2}+q}{q-\frac{1}{2}+\frac{2}{\alpha}}$ and assume $X_{i} \in \mathcal{L}^{\alpha}, E\left(X_{i}\right)=0$ and $\Delta_{\alpha}<\infty$ for some $\alpha>2$
- $\operatorname{Or} X_{i} \in \mathcal{L}^{2}, E\left(X_{i}\right)=0$ and $\sum_{j=0}^{\infty} j^{q} \omega(j)<\infty$ for some $q \in(0,1]$
- We have $\left\|\max _{n \leq N}\left|V_{n}-E\left(V_{n}\right)\right|\right\|_{\frac{\alpha}{2}}=O\left(N^{\tau} \log N\right)$ where $\tau=\frac{3}{2}-\frac{3}{2 p}+\frac{2}{\alpha}$
- Note that τ is the convergence rate from theorem 2

。Also $V_{N}-E\left(V_{N}\right)=o_{a . s .}\left[N^{\tau}(\log N)^{2}\right]$ and $\frac{V_{N}}{v_{N}}-\sigma^{2}=o_{a . s .}\left[N^{\frac{2}{\alpha}-\frac{1}{2}-\frac{1}{2 p}}(\log N)^{2}\right]$

- Possible to improve using strong invariance principle in Berkes, Liu and Wu (2014)?

Proof of corollary 3: $\left\|\max _{n \leq N}\left|V_{n}-E\left(V_{n}\right)\right|\right\|_{\frac{\alpha}{2}}=O\left(N^{\tau} \log N\right)(\mathrm{p} .21)$

Choose $d \in \mathbb{N}$ such that $2^{d-1}<N \leq 2^{d}$ (for the use of Borel-Cantelli lemma later?)

- For $1 \leq a<b,\left\|V_{a}-V_{b}-E\left(V_{b}-V_{a}\right)\right\|_{\frac{\alpha}{2}}=\left\|\sum_{i=a+1}^{b}\left[W_{i}^{2}-E\left(W_{i}^{2}\right)\right]\right\|_{\frac{\alpha}{2}}$
- $\leq \sum_{k=0}^{\infty}\left\|\sum_{i=a+1}^{b} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}$ (by projection decomposition and Minkowski inequality)
- $=\sum_{k=0}^{\infty}\left[\sum_{i=a}^{b}\left(i-t_{i}+1\right)^{\frac{\alpha}{4}}\right]^{\frac{2}{\alpha}} O\left(b^{1-\frac{1}{p}}\right)$ (mimic proof of $\left.\sum_{k=0}^{2 b_{m}-1}\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}\right)$
- $=O\left[(b-a)^{\frac{2}{\alpha}} b^{\frac{1}{2}\left(1-\frac{1}{p}\right)}\right] O\left(b^{\left.1-\frac{1}{p}\right)}=O\left[(b-a)^{\frac{2}{\alpha}} b^{\frac{3}{2}\left(1-\frac{1}{p}\right)}\right]\right.$
- Note that the bound of batch/block size is $b_{m}=O\left(n^{1-\frac{1}{p}}\right)$ and bound of sample size is b here

Proof of corollary 3:

$$
\left\|\max _{n \leq N}\left|V_{n}-E\left(V_{n}\right)\right|\right\|_{\frac{\alpha}{2}}=O\left(N^{\tau} \log N\right)(\text { p.21-22 })
$$

By proposition 1 in Wu (2007), $\left\|\max _{n \leq 2^{d}}\left|V_{n}-E\left(V_{n}\right)\right|\right\|_{\frac{\alpha}{2}}$ (maximal inequality)

$$
\circ \leq \sum_{r=0}^{d}\left[\sum_{l=1}^{2^{d-r}}\left\|V_{2^{r} l}-V_{2^{r}(l-1)}-E\left[V_{2^{r} l}-V_{2^{r}(l-1)}\right]\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}\right]^{\frac{2}{\alpha}}
$$

$$
\circ=\sum_{r=0}^{d}\left\{\sum_{l=1}^{2^{d-r}} O\left[\left(2^{r}\right)^{\frac{2}{\alpha}}\left(2^{r} l\right)^{\frac{3}{2}\left(1-\frac{1}{p}\right)}\right]^{\frac{\alpha}{2}}\right\}^{\frac{2}{\alpha}} \text { (by moment inequality proved in last slide) }
$$

$$
\circ=\sum_{r=0}^{d}\left\{O\left[\left(2^{r}\right)^{1+\frac{3 \alpha}{4}\left(1-\frac{1}{p}\right)}\right] \sum_{l=1}^{2^{d-r}} O\left[l^{\frac{3 \alpha}{4}\left(1-\frac{1}{p}\right)}\right]\right\}^{\frac{2}{\alpha}} \text { (by independence of summation index) }
$$

$$
\circ \leq \sum_{r=0}^{d}\left\{O\left[\left(2^{d}\right)^{1+\frac{3 \alpha}{4}\left(1-\frac{1}{p}\right)}\right]\right\}^{\frac{2}{\alpha}}\left(\text { since } l \leq 2^{d-r}\right)
$$

$$
\circ O(d+1) O\left[\left(2^{d}\right)^{\frac{2}{\alpha}+\frac{3}{2}-\frac{3}{2 p}}\right]
$$

$$
\circ=O\left(N^{\tau} \log N\right)\left(\text { since } \tau=\frac{3}{2}-\frac{3}{2 p}+\frac{2}{\alpha} \text { and } N \leq 2^{d} \Rightarrow \log N \leq d\right)
$$

Proof of corollary 3:

$V_{N}-E\left(V_{N}\right)=o_{a . s .[}\left[N^{\tau}(\log N)^{2}\right](\mathrm{p} .22)$

Note that $\frac{\alpha}{2}>1$. From $\left\|\max _{n \leq N}\left|V_{n}-E\left(V_{n}\right)\right|\right\|_{\frac{\alpha}{2}}=O\left(N^{\tau} \log N\right)$ (proved in last two slides),

- We have $\frac{1}{\left(2^{d \tau} d^{2}\right)^{\frac{\alpha}{2}}} \sum_{d=1}^{\infty}\left\|\max _{n \leq 2^{d}}\left|V_{n}-E\left(V_{n}\right)\right|\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}=\sum_{d=1}^{\infty} \frac{O\left[(d+1) 2^{d \tau}\right]^{\frac{\alpha}{2}}}{\left(2^{d \tau} d^{2}\right)^{\frac{\alpha}{2}}}=\sum_{d=1}^{\infty} O\left(d^{-\frac{\alpha}{2}}\right)<\infty$
- Hence $V_{N}-E\left(V_{N}\right)=o_{\text {a.s. }}\left[N^{\tau}(\log N)^{2}\right]$ (by Borel-Cantelli lemma)

。Borel-Cantelli lemma: for a sequence of events E_{1}, \ldots, if $\sum_{n=1}^{\infty} P\left(E_{n}\right)<\infty$, then $P\left(\limsup _{n \rightarrow \infty} E_{n}\right)=0$
。 $P\left[\frac{\max _{n \leq N}\left|V_{n}-E\left(V_{n}\right)\right|}{N^{\tau}(\log N)^{2}}>\epsilon\right]=E\left[\mathbb{I}\left(\frac{\max _{n \leq N}\left|V_{n}-E\left(V_{n}\right)\right|}{N^{\tau}(\log N)^{2}}>\epsilon\right)\right]$ for all $\epsilon>0$ (write probability as expectation of indicator)
$\circ \leq E\left|\frac{\max _{n \leq N}\left|V_{n}-E\left(V_{n}\right)\right|}{N^{\tau}(\log N)^{2} \epsilon}\right|$ (by Markov inequality)
$\circ \leq \frac{1}{N^{\frac{\tau \alpha}{2}}(\log N)^{\alpha}}\left\|\max _{n \leq 2^{\alpha}}\left|V_{n}-E\left(V_{n}\right)\right|\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$ (by property of norm and $\frac{\alpha}{2}>1$)

Proof of corollary 3:

$\frac{V_{N}}{v_{N}}-\sigma^{2}=o_{\text {a.s. }}\left[N^{\frac{2}{\alpha}-\frac{1}{2}-\frac{1}{2 p}}(\log N)^{2}\right]($ p.22 $)$

Note that $V_{N}-E\left(V_{N}\right)=o_{\text {a.s. }}\left[N^{\tau}(\log N)^{2}\right]$ (proved in last slide)

- And $E\left(V_{n}-v_{n} \sigma^{2}\right)=O\left[n^{1+(1-q)\left(1-\frac{1}{p}\right)}\right]$ (theorem 2.3, probably typo in t_{n})
- By choosing optimal rate $p=\frac{\frac{1}{2}+q}{q-\frac{1}{2}+\frac{2}{\alpha}}, E\left(V_{N}-v_{N} \sigma^{2}\right)=O\left(N^{\tau}\right) \ll o\left[N^{\tau}(\log N)^{2}\right]$
- We have $V_{N}-v_{N} \sigma^{2}=o_{\text {a.s. }}\left[N^{\frac{3}{-\frac{3}{2 p}+\frac{2}{\alpha}}}(\log N)^{2}\right]$
- Finally recall $v_{N}=O\left(N^{2-\frac{1}{p}}\right)$ (proved in discussion of convergence rate when $\mu \neq 0$)
- Hence $\frac{V_{N}}{v_{N}}-\sigma^{2}=o_{\text {a.s. }}\left[N^{\frac{2}{\alpha}-\frac{1}{2}-\frac{1}{2 p}}(\log N)^{2}\right]$ (little o times big O is little o)

Proof of corollary 3: summary of techniques

Establish almost sure convergence

- Use maximal inequality
- Apply Borel-Cantelli lemma on maximal with expanding samples
- Cantor's diagonal argument?
- Idea: \mathcal{L}^{p} convergence with fast enough convergence rate implies almost sure convergence

Implementation
issues

SECTION 4

Remaining question (p.9)

We can see that choice of block start a_{k} uniquely determines property of recursive TAVC

- The batch size l_{i} is determined by the selection rule (e.g. $\Delta \mathrm{SR}, \mathrm{TSR}, \mathrm{PSR}$)
- Under the simple choice $a_{k}=\left\lfloor c k^{p}\right\rfloor$, we have established the optimal choice of p
- It suffices to find the optimal choice of c in order to minimize AMSE

Assume $\Delta_{\alpha}<\infty$ for some $\alpha>4$ and $\sum_{j=0}^{\infty} j^{q} \omega(j)<\infty$ for $q=1$

- Need $\alpha>4$ for close form of AMSE (T2.2) and $q=1$ for finite bias
- By corollary 2, optimal choice of $p=\frac{3}{2}$
- Choose data driven estimate of c by procedure in Bühlmann and Künsch (1999)

Close form of AMSE (p.10)

Since $\sum_{j=0}^{\infty} j \omega(j)<\infty, \sum_{i=1}^{\infty} i|\gamma(i)|<\infty$ (by bound of autocovariance in proof of T2.3)

- As $l \rightarrow \infty, E\left(S_{l}^{2}\right)-l \sigma^{2}=-2 \sum_{k=1}^{\infty} \min (k, l) \gamma(k)=-2 \sum_{k=1}^{\infty} k \gamma(k)+o(1)=\theta+o(1)$

。Keith (and I) usually denote $v_{p} \stackrel{\text { def }}{=} \sum_{k=-\infty}^{\infty}|k|^{p} \gamma(k)$ and $u_{p} \stackrel{\text { def }}{=} \sum_{k=-\infty}^{\infty}|k|^{p}|\gamma(k)|$

- Thus we have $E\left(V_{n}-v_{n} \sigma^{2}\right)=n \theta+o(n)$
- Now we decompose the AMSE in T2.2 into variance and bias^2,
- $\left\|\frac{V_{n}}{v_{n}}-\sigma^{2}\right\|_{2}^{2}=\frac{1}{v_{n}^{2}}\left[\left\|V_{n}-E\left(V_{n}\right)\right\|_{2}^{2}+\left|E\left(V_{n}\right)-v_{n} \sigma^{2}\right|^{2}\right]$
$\circ=\frac{(4 p-2)^{2}}{c^{\frac{2}{p}} p^{4}} n^{\frac{2}{\bar{p}}-4}\left[\frac{p^{4} c^{\frac{3}{p}}}{12 p-9} n^{4-\frac{3}{p}} \sigma^{4}+n^{2} \theta^{2}+o\left(n^{2}\right)\right]$ (by $v_{n} \sim \frac{c^{\frac{1}{\bar{p}}} p^{2}}{4 p-2} n^{2-\frac{1}{p}}$, T2.2 and the result above)
$\circ=\frac{256}{81 c^{\frac{4}{3}}} n^{-\frac{8}{3}}\left[\frac{9 c^{2}}{16} \sigma^{4} n^{2}+\theta^{2} n^{2}+o\left(n^{2}\right)\right]$
$\circ=\left(\frac{16}{9} c^{\frac{2}{3}}+\frac{256}{81} c^{-\frac{4}{3}} \kappa^{2}\right) \sigma^{4} n^{-\frac{2}{3}}$ where $\kappa=\frac{|\theta|}{\sigma^{2}}$

Optimal choice of c (p.10)

The optimal choice of c should minimize $\frac{16}{9} c^{\frac{2}{3}}+\frac{256}{81} c^{-\frac{4}{3}} \kappa^{2}$

- Illustration with SymPy
- from sympy import symbols, diff, solve, simplify, Rational, init_printing
- init_printing() \# for printing Latex in console
- c, kappa $=$ symbols("c, kappa", real=True, positive=True) \# kappa $=$ v1/sigma^2
- \# Coefficent of Bias^2 and variance
- b2 = Rational $(256,81) *$ c**(-Rational(4,3$))$ *kappa**2

- $\mathrm{mse}=\mathrm{b} 2+\mathrm{v}$
- $\mathrm{dMse}=\operatorname{diff}(\mathrm{mse}, \mathrm{c})$
- $\operatorname{minC}=$ solve $(d M s e, c)$ \# optimal c
- \# first root minimize after inspection
- simplify(minC[0])
- simplify(mse.subs(c, minC[0]))
...: minC = solve(dMse, c) \# optimal c
.... \# first root minimize after inspection .. : simplify(minC[0])
Out[1]:
$4 \sqrt{2} k / 3$

In [2]: simplify(mse.subs(c, minC[0])) Out[2]:
$16 \sqrt[3]{12} \kappa^{2 / 3} / 9$

Estimate optimal c (p.10-11)

By prime factorization, we can see that output of SymPy matches with

- Optimal AMSE of $\hat{\sigma}_{\Delta S R}^{2}(n)=\frac{2^{\frac{14}{3}}}{3^{\frac{5}{3}}} \theta^{\frac{2}{3}} \sigma^{\frac{8}{3}} n^{-\frac{2}{3}}$ with optimal $c=\frac{4 \sqrt{2}|\theta|}{3 \sigma^{2}}=\frac{4 \sqrt{2}}{3} \kappa$
- Literature shows that optimal AMSE of $\hat{\sigma}_{o b m}^{2}(n)=2^{\frac{2}{3}} 3^{\frac{1}{3}} \theta^{\frac{2}{3}} \sigma^{\frac{8}{3}} n^{-\frac{2}{3}}$
- With batch size $l_{n}=\left\lfloor\lambda_{*} n^{\frac{1}{3}}\right\rfloor$ and optimal $\lambda_{*}^{3}=\frac{3 \theta^{2}}{2 \sigma^{4}} \Rightarrow \kappa=\sqrt{\frac{2}{3} \lambda_{*}^{3}}$
- Recall that we do not know the optimal functional of block start (same for batch size here)
- This shows $\operatorname{AMSE}\left[\hat{\sigma}_{\Delta S R}^{2}(n)\right]=1.778 \operatorname{AMSE}\left[\hat{\sigma}_{o b m}^{2}(n)\right]$. Chan and Yau's (2017) TSR and PSR dominate it in MSE sense
- Theorem 4.1 in Bühlmann and Künsch (1999) gives $\frac{\hat{l}_{n}^{3}}{n} \sim \frac{1}{n \hat{b}^{3}} \sim \frac{3 \theta^{2}}{2 \sigma^{4}}=\lambda_{*}^{3} \Rightarrow \lambda_{*}=\hat{l}_{n} n^{-\frac{1}{3}}$
- They gives a procedure to estimate \hat{l}_{n} via pilot simulation. Hence n is the sample size in pilot simulation here
- Note that this is asymptotic. Can we have better pilot procedure for small sample?
- Using these relationship, we have $\hat{c}=\frac{8}{3 \sqrt{3}} \lambda_{*}^{\frac{3}{2}}=\frac{8}{3 \sqrt{3}} \hat{l}_{n} n^{-\frac{1}{3}}$

Bühlmann and Künsch's (1999) algorithm (p.10-11)

Let the Tukey-Hanning window $w_{T H}(x)=\frac{1}{2}[1+\cos (\pi x)] \mathbb{I}(|x| \leq 1)$

- Let the splt-cosine window $w_{S C}(x)=\left\{\begin{aligned} \frac{1}{2}\{1+\cos [5(x-0.8) \pi]\} & 0.8 \leq|x| \leq 1 \\ 1, & |x|<0.8 \\ 0, & |x|>1\end{aligned}\right.$
- 1) Compute $\hat{\gamma}(k)=\frac{1}{n} \sum_{i=1}^{n-|k|}\left(X_{i}-\bar{X}_{n}\right)\left(X_{i+|k|}-\bar{X}_{n}\right)$ for $k=1-n, \ldots, n-1$
-2) Let $b_{0}=\frac{1}{n}$. For $m=1,2,3,4$, compute $b_{m}=n^{-\frac{1}{3}}\left[\frac{\sum_{k=1-n}^{n-1} \widehat{\gamma}(k)^{2}}{6 \sum_{k=1-n}^{n-1} w_{S C}\left(k b_{m-1} n^{\frac{4}{21}}\right)_{k^{2}} \widehat{\gamma}(k)^{2}}\right]^{\frac{1}{3}}$
- 3) Let \hat{l}_{n} be the closest integer of \hat{b}^{-1}, where $\hat{b}=n^{-\frac{1}{3}}\left[\frac{2\left(\sum_{k=1-n}^{n-1} w_{T H}\left(k b_{4} n^{\frac{4}{21}}\right)_{\hat{\gamma}(k)}\right)^{2}}{3\left(\sum_{k=1-n}^{n-1} w_{S C}\left(k b_{4} n^{\frac{4}{21}}\right)_{|k| \hat{\gamma}(k)}\right)^{2}}\right]^{\frac{1}{3}}$

Other possible procedures

AR(1) plug-in method
ACVF inspection

[^0]: - By Minkowski inequality and property of little o

