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Introduction
SECTION 1
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Time-average variance constant 
(p.1)

Let 𝑋𝑖 𝑖∈ℤ be a stationary and ergodic process with mean 𝜇 = 𝐸(𝑋0) and finite variance

◦ Denote covariance function by 𝛾𝑘 = 𝐶𝑜𝑣 𝑋0, 𝑋𝑘 ∀𝑘 ∈ ℤ

Sample mean: ത𝑋𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖

◦ Asymptotic normality under suitable conditions: 𝑛 ത𝑋𝑛 − 𝜇 ՜
𝑑
𝑁 0, 𝜎2

◦ 𝜎2 here is called the time-average variance constant (TAVC) or long-run variance

◦ Note that 𝑉𝑎𝑟 𝑋𝑖 = 𝛾0 ≠ 𝜎2 in time series setting

Estimation of 𝜎2 is important for inference of time series

◦ Representation under suitable conditions: 𝜎2 = σ𝑘∈ℤ 𝛾𝑘
◦ Check previous reading group meeting (slide p.20, also check Keith’s note) for the conditions 
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Overlapping batch means (p.2)

Overlapping batch means (OBM): ො𝜎𝑜𝑏𝑚
2 𝑛 =

𝑙𝑛

𝑛−𝑙𝑛+1
σ
𝑗=1
𝑛−𝑙𝑛+1 1

𝑙𝑛
σ
𝑖=𝑗
𝑗+𝑙𝑛−1𝑋𝑖 − ത𝑋𝑛

2

◦ First proposed by Meketon and Schmeiser (1984)

◦ Closely related to lag window estimator using Bartlett kernel (Newey & West, 1987)

◦ An illustration assuming 𝜇 = 0

◦ Same AMSE if bandwidth 𝑙𝑛 are both chosen optimally

◦ Nonoverlapping (NBM) version is also possible, but with worse properties

◦ Song (2018) suggested an optimal linear combination of OBM and NBM would be better than solely using OBM

◦ I discussed with Keith and we thought that her evidence was not solid enough (e.g. no theoretical properties shown)
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Recursive estimation

Recursive formula for sample mean: ത𝑋𝑛 =
𝑛−1

𝑛
ത𝑋𝑛−1 +

1

𝑛
𝑋𝑛

Recursive formula for sample variance: 𝑆𝑛
2 =

𝑛−2

𝑛−1
𝑆𝑛−1
2 +

1

𝑛
𝑋𝑛 − ത𝑋𝑛−1

2

◦ This is Welford’s (1962) online algorithm

Recursive formula for TAVC: did not exist

◦ Note that ො𝜎𝑜𝑏𝑚
2 𝑛 has both 𝑂(𝑛) computational and memory complexity

◦ When 𝑙𝑛 ≠ 𝑙𝑛−1, all batch means need to be updated

◦ However it is important for 

◦ Convergence diagnostics of MCMC

◦ Sequential monitoring and testing
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Notations (p.3)

ℒ𝑝 norm: 𝑋 𝑝 ≝ 𝐸 𝑋 𝑝
1

𝑝, 𝑋 ∈ ℒ𝑝 if 𝑋 𝑝 < ∞

◦ Write 𝑋 = 𝑋 2

Same order: 𝑎𝑛 ∼ 𝑏𝑛 if lim
𝑛՜∞

𝑎𝑛

𝑏𝑛
= 1

◦ 𝑎𝑛 ≍ 𝑏𝑛 if ∃𝑐 > 0 such that 
1

𝑐
≤

𝑎𝑛

𝑏𝑛
≤ 𝑐 for all large 𝑛

Let 𝑆𝑛 = σ𝑖=1
𝑛 𝑋𝑖 − 𝑛𝜇 and 𝑆𝑛

∗ = max
𝑖≤𝑛

𝑆𝑖
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Recursive TAVC 
estimates
SECTION 2
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Algorithm when 𝜇 = 0

Start of each block: 𝑎𝑘 𝑘∈ℕ is a strictly increasing integer sequence such that 

◦ 𝑎1 = 1 and 𝑎𝑘+1 − 𝑎𝑘 ՜ ∞ as 𝑘 ՜ ∞

◦ Start of each batch: 𝑡𝑖 = 𝑎𝑘 if 𝑎𝑘 ≤ 𝑖 < 𝑎𝑘+1

Component: 𝑉𝑛 = σ𝑖=1
𝑛 𝑊𝑖

2 where 𝑊𝑖 = 𝑋𝑡𝑖 + 𝑋𝑡𝑖+1 +⋯+ 𝑋𝑖

◦ 𝑣𝑛 = σ𝑖=1
𝑛 𝑙𝑖 where 𝑙𝑖 = 𝑖 − 𝑡𝑖 + 1

◦ Observe that 𝑊𝑖 is the batch sum and 𝑙𝑖 is the batch size

Algorithm: at stage 𝑛, we store 𝑛, 𝑘𝑛, 𝑎𝑘𝑛 , 𝑣𝑛 , 𝑉𝑛 ,𝑊𝑛 . At stage 𝑛 + 1,

◦ If 𝑛 + 1 = 𝑎𝑘𝑛+1, set 𝑘𝑛+1 = 𝑘𝑛 + 1 and 𝑊𝑛+1 = 𝑋𝑛+1. Otherwise set 𝑘𝑛+1 = 𝑘𝑛 and 𝑊𝑛+1 = 𝑊𝑛 + 𝑋𝑛+1

◦ Set 𝑉𝑛+1 = 𝑉𝑛 +𝑊𝑛+1
2 and 𝑣𝑛+1 = 𝑣𝑛 + 𝑛 + 2 − 𝑎𝑘𝑛+1 since 𝑡𝑛+1 = 𝑎𝑘𝑛+1

◦ The estimate is ො𝜎Δ𝑆𝑅
2 𝑛 + 1 =

𝑉𝑛+1

𝑣𝑛+1
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Graphical illustration (Chan and 
Yau, 2017)
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Start of each block = 𝑎𝑘; thus a block 𝐵𝑘 contains 𝑎𝑘 , 𝑎𝑘 + 1,… , 𝑎𝑘+1 − 1

Start of each batch 

= 𝑡𝑖



Choice of 𝑎𝑘 and 𝑡𝑛 (p.3-4)

A simple choice is 𝑎𝑘 = 𝑐𝑘𝑝 where 𝑐 > 0 and 𝑝 > 1 are constants

◦ Optimal choice of functional is not known

◦ I discussed with Keith and we need to resort to variational calculus for this problem

◦ However it seems to be unsolvable without proper boundary conditions (tried on SymPy)

Note that 𝑡𝑛 is implicitly determined by choice of 𝑎𝑘
◦ Since 𝑎𝑘 ≤ 𝑛 < 𝑎𝑘+1, choosing 𝑎𝑘 = 𝑐𝑘𝑝 means 𝑐𝑘𝑝 − 1 < 𝑛 < 𝑐 𝑘 + 1 𝑝 − 1

◦ Solving 𝑘 = 𝑘𝑛 from the above inequalities, we have

◦ 𝑡𝑛 = 𝑎𝑘𝑛 where 𝑘𝑛 =
𝑛+1

𝑐

1

𝑝
− 1
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Modification when 𝜇 ≠ 0 (p.4-5)

General component: 𝑉𝑛
′ = σ𝑖=1

𝑛 𝑊𝑖
′ 2 where 𝑊𝑖

′ = 𝑋𝑡𝑖 + 𝑋𝑡𝑖+1 +⋯+ 𝑋𝑖 − 𝑙𝑖 ത𝑋𝑛

◦ Observe that 𝑊𝑖
′ 2 = 𝑊𝑖

2 − 2𝑙𝑖𝑊𝑖
ത𝑋𝑛 + 𝑙𝑖 ത𝑋𝑛

2

◦ Let 𝑈𝑛 = σ𝑖=1
𝑛 𝑙𝑖𝑊𝑖 and 𝑞𝑛 = σ𝑖=1

𝑛 𝑙𝑖
2

◦ Note that they can also be updated recursively

◦ Then 𝑉𝑛
′ = 𝑉𝑛 − 2𝑈𝑛 ത𝑋𝑛 + 𝑞𝑛 ത𝑋𝑛

2 and ො𝜎Δ𝑆𝑅
2 𝑛 =

𝑉𝑛
′

𝑣𝑛

◦ Complete algorithm is similar to previous logic so we skip it here

Generalization to spectral density estimation is possible

◦ Relation between spectral density and TAVC was discussed in previous reading group (slide p.47)
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Convergence 
properties
SECTION 3
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Representation of TAVC (p.5-6)

Consider Wu’s (2005) nonlinear Wold process

◦ Weak stability with 𝑝 = 2 (i.e. Ω2 < ∞) guarantees invariance principle, which entails CLT

Representation of TAVC

◦ Assume 𝐸 𝑋𝑖 = 0 and σ𝑖=0
∞ 𝒫0𝑋𝑖 2 < ∞ where 𝒫𝑖 ⋅= 𝐸 ⋅ ℱ𝑖 − 𝐸 ⋅ ℱ𝑖−1

◦ The later assumption is equivalent to Ω2 < ∞ (which suggest short-range dependence)

◦ Then 𝐷𝑘 ≝ σ𝑖=𝑘
∞ 𝒫𝑘𝑋𝑖 ∈ ℒ2 and is a stationary martingale difference sequence w.r.t. ℱ𝑘

◦ Proved in previous reading group (slide p.21)

◦ By theorem 1 in Hannan (1979), we have invariance principle and 𝜎 = 𝐷𝑘 2

◦ Why not 𝐷0 2? Because they have same distribution by stationarity and we cannot observe 𝑋0 in practice

◦ Let 𝑆𝑛 = σ𝑖=1
𝑛 𝑋𝑖 and 𝑀𝑛 = σ𝑖=1

𝑛 𝐷𝑖

◦ If Ω𝛼 < ∞ for 𝛼 > 2, then 𝑆𝑛 −𝑀𝑛 𝛼 = 𝑜 𝑛

◦ This partly comes from moment inequality. See previous reading group (slide p.20)
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Moment 
convergence

SECTION 3.1
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Moment convergence (p.6-7)

Theorem 1: let 𝐸 𝑋𝑖 = 0 and 𝑋𝑖 ∈ ℒ𝛼 where 𝛼 > 2

◦ Assume σ𝑖=0
∞ 𝒫0𝑋𝑖 𝛼 < ∞

◦ Equivalent to Ω𝛼 < ∞, which is mild as 𝜎2 does not always exist for long-range dependent processes

◦ Further assume as 𝑚 ՜ ∞, 𝑎𝑚+1 − 𝑎𝑚 ՜ ∞ and 
𝑎𝑚+1−𝑎𝑚

2

σ𝑘=2
𝑚 𝑎𝑘−𝑎𝑘−1

2 ՜ 0

◦ Earlier condition 𝑎𝑚+1 − 𝑎𝑚 ՜ ∞ is needed to account for dependence

◦ Later condition is needed so that 𝑎𝑚 does not diverge to ∞ so fast

◦ Then 
𝑉𝑛

𝑣𝑛
− 𝜎2

𝛼

2

= 𝑜(1)

◦ This implies finite forth moment is not necessary for consistency of ො𝜎Δ𝑆𝑅
2 𝑛 (e.g. take 𝛼 = 3)

◦ Convergence in ℒ
𝛼

2 norm where 𝛼 > 2 implies convergence in probability (i.e. consistency)

Corollary 1: under same assumptions of theorem 1, we also have 
𝑉𝑛
′

𝑣𝑛
− 𝜎2

𝛼

2

= 𝑜(1)
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Proof of theorem 1: blocking (p.13)

Blocking: for 𝑛 ∈ ℕ choose 𝑚 = 𝑚𝑛 ∈ ℕ such that 𝑎𝑚 ≤ 𝑛 < 𝑎𝑚+1

◦ 𝑚 represent total number of complete blocks

◦ Then 𝑣𝑛 = σ𝑗=1
𝑛 𝑗 − 𝑡𝑗 + 1 = σ𝑖=2

𝑚 σ𝑗=𝑎𝑖−1

𝑎𝑖−1 𝑗 − 𝑡𝑗 + 1 + σ𝑗=𝑎𝑚
𝑛 𝑗 − 𝑡𝑗 + 1

◦ =
1

2
σ𝑖=2
𝑚 𝑎𝑖 − 𝑎𝑖−1 𝑎𝑖 − 𝑎𝑖−1 + 1 +

1

2
𝑛 − 𝑎𝑚 𝑛 − 𝑎𝑚 + 1

◦ ∼
1

2
σ𝑖=2
𝑚 𝑎𝑖 − 𝑎𝑖−1

2 by assumption of theorem 1

Note that 1 ≤ liminf
𝑚՜∞

𝑣𝑛

𝑣𝑎𝑚
≤ limsup

𝑚՜∞

𝑣𝑎𝑚+1

𝑣𝑎𝑚
since 𝑣𝑎𝑚+1

≥ 𝑣𝑛 (?)

◦ By assuming 
𝑎𝑚+1−𝑎𝑚

2

σ𝑘=2
𝑚 𝑎𝑘−𝑎𝑘−1

2 ՜ 0, limsup
𝑚՜∞

𝑣𝑎𝑚+1

𝑣𝑎𝑚
= 1

◦ Hence both limits are 1
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Proof of theorem 1: 
martingale approximation (p.13)

For any fixed 𝑘0 ∈ ℕ, since 𝑎𝑚+1 − 𝑎𝑚 is increasing to ∞, we have

◦ lim
𝑚՜∞

1

𝑣𝑛
σ𝑖=1
𝑛 𝕀 𝑖 − 𝑡𝑖 + 1 ≤ 𝑘0 ≤ lim

𝑚՜∞

1

𝑣𝑛
𝑚𝑘0 = 0

◦ Using 𝑚+ 1 𝑘0 is better (?)

Martingale approximation: σ𝑖=0
∞ 𝒫0𝑋𝑖 𝛼 < ∞ implies 𝐷𝑘 = σ𝑖=𝑘

∞ 𝒫𝑘𝑋𝑖 ∈ ℒ𝛼

◦ Let 𝑀𝑛 = σ𝑖=1
𝑛 𝐷𝑖. By theorem 1 in Wu (2007), the above condition also implies

◦ 𝑆𝑛 𝛼 = 𝑂 𝑛 , 𝑀𝑛 𝛼 = 𝑂 𝑛 and 𝑆𝑛 −𝑀𝑛 𝛼 = 𝑜 𝑛

◦ Hence as 𝑛 ՜ ∞, 𝜌𝑛 ≝
1

𝑛
𝑆𝑛
2 −𝑀𝑛

2
𝛼

2
≤

1

𝑛
𝑆𝑛 −𝑀𝑛 𝛼 𝑆𝑛 +𝑀𝑛 𝛼 ՜ 0

◦ Inequality by Cauchy–Schwarz: 𝑆𝑛 −𝑀𝑛 𝑆𝑛 +𝑀𝑛 𝛼

2

≤ 𝑆𝑛 −𝑀𝑛 𝛼 𝑆𝑛 +𝑀𝑛 𝛼

◦ Aim to approximate 𝑉𝑛 by 𝑄𝑛 = σ𝑖=1
𝑛 𝑅𝑖

2 where 𝑅𝑖 = 𝐷𝑡𝑖 + 𝐷𝑡𝑖+1 +⋯+𝐷𝑖

◦ Such that 𝑄𝑛 − 𝑉𝑛 𝛼

2
= 𝑜(𝑣𝑛) and show that 

𝑄𝑛

𝑣𝑛
− 𝜎2

𝛼

2

= 𝑜(1)
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Proof of theorem 1: 𝑄𝑛 − 𝑉𝑛 𝛼

2
= 𝑜(𝑣𝑛) (p.13)

limsup
𝑛՜∞

1

𝑣𝑛
𝑉𝑛 − 𝑄𝑛 𝛼

2
≤ limsup

𝑛՜∞

1

𝑣𝑛
σ𝑖=1
𝑛 𝑅𝑖

2 −𝑊𝑖
2

𝛼

2

(by Minkowski inequality)

◦ ≤ limsup
𝑛՜∞

1

𝑣𝑛
σ𝑖=1
𝑛 𝑖 − 𝑡𝑖 + 1 𝜌𝑖−𝑡𝑖+1 (by definition of 𝜌𝑛 and stationarity)

◦ ≤ limsup
𝑛՜∞

1

𝑣𝑛
σ1≤𝑖≤𝑛:𝑖−𝑡𝑖+1>𝑘0

𝑖 − 𝑡𝑖 + 1 𝜌𝑖−𝑡𝑖+1 (by lim
𝑚՜∞

1

𝑣𝑛
σ𝑖=1
𝑛 𝕀 𝑖 − 𝑡𝑖 + 1 ≤ 𝑘0 = 0)

◦ ≤ sup
𝑘≥𝑘0

𝜌𝑘 (by σ 𝑖 − 𝑡𝑖 + 1 𝜌𝑖−𝑡𝑖+1 ≤ sup
𝑘≥𝑘0

𝜌𝑘 σ 𝑖 − 𝑡𝑖 + 1 )

◦ ՜ 0 (by 𝜌𝑛 ՜ 0 as 𝑛 ՜ ∞)
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Proof of theorem 1: 
𝑄𝑛

𝑣𝑛
− 𝜎2

𝛼

2

= 𝑜(1) (p.14)

Recall that 𝑡𝑖 = 𝑎𝑘 if 𝑎𝑘 ≤ 𝑖 ≤ 𝑎𝑘+1 − 1

◦ Block square of sum: 𝑌𝑘 = σ𝑖=𝑎𝑘

𝑎𝑘+1−1 𝐷𝑡𝑖 + 𝐷𝑡𝑖+1 +⋯+𝐷𝑖
2
= σ𝑖=𝑎𝑘

𝑎𝑘+1−1 𝐷𝑎𝑘 + 𝐷𝑎𝑘+1 +⋯+ 𝐷𝑖
2

◦ Block sum of square: ෨𝑌𝑘 = σ𝑖=𝑎𝑘

𝑎𝑘+1−1 𝐷𝑎𝑘
2 + 𝐷𝑎𝑘+1

2 +⋯+ 𝐷𝑖
2

◦ 𝑌𝑘 𝛼

2
≤ σ𝑖=𝑎𝑘

𝑎𝑘+1−1 𝐷𝑎𝑘 +𝐷𝑎𝑘+1 +⋯+ 𝐷𝑖
2

𝛼

2

(by Minkowski inequality)

◦ = σ𝑖=𝑎𝑘

𝑎𝑘+1−1 𝐷𝑎𝑘 +𝐷𝑎𝑘+1 +⋯+ 𝐷𝑖 𝛼

2

◦ ≤ σ
𝑖=𝑎𝑘

𝑎𝑘+1−1 𝑐𝛼 𝑖 − 𝑎𝑘 + 1 𝐷1 𝛼
2 where 𝑐𝛼 is a constant which only depends on 𝛼

◦ By Burkholder’s inequality and ℒ𝛼 stationarity. See previous reading group (slide p. 21-22)

◦ On the other hand, ෨𝑌𝑘 𝛼

2

≤ σ𝑖=𝑎𝑘

𝑎𝑘+1−1 𝑖 − 𝑎𝑘 + 1 𝐷1 𝛼
2 (by Minkowski inequality and ℒ𝛼 stationarity)
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Proof of theorem 1: 
𝑄𝑛

𝑣𝑛
− 𝜎2

𝛼

2

= 𝑜(1) (p.14-15)

Since 1 <
𝛼

2
≤ 2 and 𝑌𝑘 − 𝐸 𝑌𝑘 ℱ𝑎𝑘 is a MDS, we have

◦ It seems this impose 𝛼 ≤ 4 on theorem 1

◦ σ𝑘=1
𝑚 𝑌𝑘 − 𝐸 𝑌𝑘 ℱ𝑎𝑘 𝛼

2

𝛼

2 ≤ 𝑐𝛼 σ𝑘=1
𝑚 𝑌𝑘 − 𝐸 𝑌𝑘 ℱ𝑎𝑘 𝛼

2

𝛼

2 (by Burkholder’s inequality)

◦ ≤ 𝑐𝛼 σ𝑘=1
𝑚 𝑌𝑘 𝛼

2

𝛼

2 (by Jensen’s inequality, 𝑐𝛼 actually changes)

◦ Similarly, σ𝑘=1
𝑚 ෨𝑌𝑘 − 𝐸 ෨𝑌𝑘 ℱ𝑎𝑘 𝛼

2

𝛼

2 ≤ 𝑐𝛼 σ𝑘=1
𝑚 ෨𝑌𝑘 𝛼

2

𝛼

2

Note that 𝐷𝑖 are also MDS and 𝐸 ෨𝑌𝑘 ℱ𝑎𝑘 = 𝐸 𝑌𝑘 ℱ𝑎𝑘
◦ Difference between ෨𝑌𝑘 and 𝑌𝑘 lies in the cross terms, e.g. 𝐷𝑎𝑘𝐷𝑎𝑘+1

◦ However by property of MDS, 𝐸 𝐷𝑎𝑘𝐷𝑎𝑘+1 = 0

20



Proof of theorem 1: 
𝑄𝑛

𝑣𝑛
− 𝜎2

𝛼

2

= 𝑜(1) (p.15)

Note that σ𝑘=1
𝑚 𝑌𝑘 − ෨𝑌𝑘 𝛼

2

𝛼

2 = σ𝑘=1
𝑚 𝑌𝑘 − ෨𝑌𝑘 − 𝐸 𝑌𝑘 ℱ𝑎𝑘 + 𝐸 𝑌𝑘 ℱ𝑎𝑘 𝛼

2

𝛼

2

◦ We do not work on cross-term directly with Minkowski directly as the bound is looser

◦ ≤ 𝑐𝛼 σ𝑘=1
𝑚 𝑌𝑘 𝛼

2

𝛼

2 + ෨𝑌𝑘 𝛼

2

𝛼

2 (by Minkowski and inequalities proved in last slide)

◦ ≤ 𝑐𝛼 𝐷1 𝛼
𝛼σ𝑘=1

𝑚 σ
𝑖=𝑎𝑘

𝑎𝑘+1−1 𝑖 − 𝑎𝑘 + 1

𝛼

2
(by inequalities proved in two slides ago)

◦ ≤ 𝑐𝛼 𝐷1 𝛼
𝛼max
ℎ≤𝑚

σ𝑖=𝑎ℎ

𝑎ℎ+1−1 𝑖 − 𝑎ℎ + 1

𝛼

2
−1
σ𝑘=1
𝑚 σ𝑖=𝑎𝑘

𝑎𝑘+1−1 𝑖 − 𝑎𝑘 + 1

◦ Recall that 𝑣𝑎𝑚 = σ𝑘=1
𝑚 σ

𝑖=𝑎𝑘

𝑎𝑘+1−1 𝑖 − 𝑎𝑘 + 1 by blocking
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Proof of theorem 1: 
𝑄𝑛

𝑣𝑛
− 𝜎2

𝛼

2

= 𝑜(1) (p.15)

Now 𝑣𝑛
−
𝛼

2 σ𝑘=1
𝑚 𝑌𝑘 − ෨𝑌𝑘 𝛼

2

𝛼

2 ≤ 𝑣𝑛
−
𝛼

2
+1
𝑐𝛼 𝐷1 𝛼

𝛼max
ℎ≤𝑚

σ
𝑖=𝑎ℎ

𝑎ℎ+1−1 𝑖 − 𝑎ℎ + 1

𝛼

2
−1

◦ By 1 ≤ liminf
𝑚՜∞

𝑣𝑛

𝑣𝑎𝑚
≤ limsup

𝑚՜∞

𝑣𝑎𝑚+1

𝑣𝑎𝑚
= 1

◦ ≤ 𝑐𝛼 𝐷1 𝛼
𝛼

max
ℎ≤𝑚

𝑎ℎ+1−𝑎ℎ
2

𝑣𝑛

𝛼

2
−1

՜ 0 (by 
𝑎𝑚+1−𝑎𝑚

2

σ𝑘=2
𝑚 𝑎𝑘−𝑎𝑘−1

2 ՜ 0)

Ergodic theorem: since 𝐷𝑘
2 ∈ ℒ

𝛼

2 , we have 𝐷1
2 +⋯+ 𝐷𝑙

2 − 𝑙𝜎2 𝛼

2

= 𝑜(𝑙)

◦ Therefore ෨𝑌𝑘 − 𝐸 ෨𝑌𝑘 𝛼

2

= 𝑜 𝑎𝑘+1 − 𝑎𝑘
2

◦ Recall that ෨𝑌𝑘 = σ
𝑖=𝑎𝑘

𝑎𝑘+1−1 𝐷𝑎𝑘
2 + 𝐷𝑎𝑘+1

2 +⋯+𝐷𝑖
2 . The sum is a isosceles triangular shaped

◦ Then lim
𝑛՜∞

1

𝑣𝑛
σ𝑘=1
𝑚 ෨𝑌𝑘 − 𝐸 ෨𝑌𝑘 𝛼

2

= lim
𝑛՜∞

1

𝑣𝑛
σ𝑘=1
𝑚 𝑜 𝑎𝑘+1 − 𝑎𝑘

2 = 0

◦ By Minkowski inequality and property of little o
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Proof of theorem 1: 
𝑄𝑛

𝑣𝑛
− 𝜎2

𝛼

2

= 𝑜(1) (p.15)

Since 
1

𝑣𝑛
σ𝑘=1
𝑚 𝑌𝑘 − ෨𝑌𝑘 𝛼

2

՜ 0 ⇔ σ𝑘=1
𝑚 𝑌𝑘 − ෨𝑌𝑘 𝛼

2

= 𝑜 𝑣𝑛 (first part in last slide)

◦ And lim
𝑛՜∞

1

𝑣𝑛
σ𝑘=1
𝑚 ෨𝑌𝑘 − 𝐸 ෨𝑌𝑘 𝛼

2

= 0 ⇔ σ𝑘=1
𝑚 ෨𝑌𝑘 − 𝐸 ෨𝑌𝑘 𝛼

2

= 𝑜 𝑣𝑛 (second part in last slide)

◦ We have σ𝑘=1
𝑚 𝑌𝑘 − 𝐸 ෨𝑌𝑘 𝛼

2

= σ𝑘=1
𝑚 𝑌𝑘 − 𝐸 𝑌𝑘 𝛼

2
(by 𝐸 ෨𝑌𝑘 ℱ𝑎𝑘 = 𝐸 𝑌𝑘 ℱ𝑎𝑘 )

◦ = σ𝑘=1
𝑚 𝑌𝑘 − 𝑣𝑎𝑚𝜎

2
𝛼

2

= 𝑜 𝑣𝑎𝑚 (by ergodic theorem)

Finally we compare 𝑄𝑛 and 𝑄𝑎𝑚+1−1 = σ𝑘=1
𝑚 𝑌𝑘

◦ 𝑄𝑛 − 𝑄𝑎𝑚+1−1 𝛼

2

= σ𝑖=𝑛+1
𝑎𝑚+1−1𝑅𝑖

2
𝛼

2

(recall 𝑅𝑖 = 𝐷𝑡𝑖 + 𝐷𝑡𝑖+1 +⋯+ 𝐷𝑖)

◦ ≤ σ
𝑖=𝑛+1
𝑎𝑚+1−1 𝑅𝑖 𝛼

2 (by Minkowski inequality)

◦ = σ
𝑖=𝑛+1
𝑎𝑚+1−1𝑂(𝑖 − 𝑡𝑖 + 1) ≤ 𝑎𝑚+1 − 𝑎𝑚

2 = 𝑜(𝑣𝑛) (by 
𝑎𝑚+1−𝑎𝑚

2

σ𝑘=2
𝑚 𝑎𝑘−𝑎𝑘−1

2 ՜ 0)
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Proof of corollary 1: requirement (p.15)

Note that 𝑉𝑛
′ remains unchanged if 𝑋𝑖 is replaced by 𝑋𝑖 − 𝜇

◦ Hence we can assume 𝜇 = 0 wlog

◦ By 𝑉𝑛
′ = 𝑉𝑛 − 2𝑈𝑛 ത𝑋𝑛 + 𝑞𝑛 ത𝑋𝑛

2 and theorem 1, it suffices to verify

◦ 𝑈𝑛 ത𝑋𝑛 𝛼

2
= 𝑜 𝑣𝑛 and

◦ 𝑞𝑛 ത𝑋𝑛
2

𝛼

2
= 𝑜 𝑣𝑛

By moment inequality, 𝑆𝑛 𝛼 = 𝑂 𝑛 ⇒ ത𝑋𝑛 𝛼 = 𝑂 𝑛−
1

2
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Proof of corollary 1: 𝑞𝑛 ത𝑋𝑛
2

𝛼

2
= 𝑜 𝑣𝑛 (p.16)

Choose 𝑚 ∈ ℕ such that 𝑎𝑚 ≤ 𝑛 < 𝑎𝑚+1, we have

◦ 𝑎𝑚+1 − 𝑎𝑚
2 = 𝑜 1 σ𝑘=2

𝑚 𝑎𝑘 − 𝑎𝑘−1
2 (by 

𝑎𝑚+1−𝑎𝑚
2

σ𝑘=2
𝑚 𝑎𝑘−𝑎𝑘−1

2 ՜ 0)

◦ ≤ 𝑜 1 σ𝑘=2
𝑚 𝑎𝑘 − 𝑎𝑘−1

2 = 𝑜(𝑎𝑚
2 ) (by 𝑎𝑘 is positive and telescoping sum)

Since 𝑎𝑚 ՜ ∞ and is increasing, max
𝑙≤𝑚

𝑎𝑙+1 − 𝑎𝑙 = 𝑜 𝑎𝑚 = 𝑜(𝑛) (by result of the above)

◦ Recall that 𝑞𝑛 = σ𝑖=1
𝑛 𝑙𝑖

2 and 𝑣𝑛 = σ𝑖=1
𝑛 𝑙𝑖 , we have

◦ 𝑞𝑛 ≤ 𝑣𝑛max
𝑙≤𝑚

𝑎𝑙+1 − 𝑎𝑙 (by blocking)

◦ = 𝑣𝑛𝑜(𝑛)

Hence 𝑞𝑛 ത𝑋𝑛
2 𝛼

2
= 𝑣𝑛𝑜 𝑛 𝑂 𝑛−1 = 𝑜(𝑣𝑛)

◦ 𝑜 𝑎𝑛 𝑂 𝑏𝑛 = 𝑜(𝑎𝑛𝑏𝑛) (little o times big O is little o)
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Proof of corollary 1: 𝑈𝑛 ത𝑋𝑛 𝛼

2
= 𝑜 𝑣𝑛 (p.16)

If 𝑈𝑛 𝛼 = 𝑂 1 σ𝑙=1
𝑚 𝑎𝑙+1 − 𝑎𝑙

5, then we have

◦ 𝑈𝑛 ത𝑋𝑛 𝛼

2
≤ 𝑈𝑛 𝛼

ҧ𝑋𝑛 𝛼 (by Cauchy–Schwarz inequality)

◦ = 𝑂 𝑛−
1

2 σ𝑙=1
𝑚 𝑎𝑙+1 − 𝑎𝑙 5 (by moment inequality)

◦ ≤ 𝑂 𝑛−
1

2 σ𝑙=1
𝑚 𝑎𝑙+1 − 𝑎𝑙

2 max
𝑙≤𝑚

𝑎𝑙+1 − 𝑎𝑙 (by σ𝑙=1
𝑚 𝑎𝑙+1 − 𝑎𝑙

4 ≤ σ𝑙=1
𝑚 𝑎𝑙+1 − 𝑎𝑙

2 2)

◦ = 𝑂 𝑛−
1

2 𝑜 𝑛
1

2 σ𝑙=1
𝑚 𝑎𝑙+1 − 𝑎𝑙

2 (by max
𝑙≤𝑚

𝑎𝑙+1 − 𝑎𝑙 = 𝑜(𝑛))

◦ = 𝑂 𝑛−
1

2 𝑜 𝑛
1

2 𝑜(𝑣𝑛) (by blocking)

◦ = 𝑜(𝑣𝑛) (little o times big O is little o)

Now we only need to prove 𝑈𝑛 𝛼 = 𝑂 1 σ𝑙=1
𝑚 𝑎𝑙+1 − 𝑎𝑙

5
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Proof of corollary 1: 𝑈𝑛 ത𝑋𝑛 𝛼

2
= 𝑜 𝑣𝑛 (p.16)

Recall 𝑙𝑖 = 𝑖 − 𝑡𝑖 + 1 and 𝑈𝑛 = σ𝑖=1
𝑛 𝑙𝑖𝑊𝑖 where 𝑊𝑖 = 𝑋𝑡𝑖 + 𝑋𝑡𝑖+1 +⋯+ 𝑋𝑖

◦ Let ℎ𝑗 = ℎ𝑗,𝑛 = σ𝑖=1
𝑛 𝑙𝑖𝕀 𝑡𝑖 ≤ 𝑗 ≤ 𝑖 , 𝑗 = 1, … , 𝑛

◦ Then 𝑈𝑛 = σ𝑖=1
𝑛 𝑙𝑖 σ𝑗=𝑡𝑖

𝑖 𝑋𝑗 = σ𝑗=1
𝑛 𝑋𝑗ℎ𝑗

◦ Since 𝑋𝑗 = σ𝑘=0
∞ 𝒫𝑗−𝑘𝑋𝑗 and 𝒫𝑗−𝑘𝑋𝑗 is MDS, we have

◦ 𝑈𝑛 𝛼 ≤ σ𝑘=0
∞ σ𝑗=1

𝑛 𝒫𝑗−𝑘𝑋𝑗ℎ𝑗 𝛼
(by Minkowski inequality)

◦ ≤ σ𝑘=0
∞ 𝑐𝛼 σ𝑗=1

𝑛 ‖𝒫𝑗−𝑘𝑋𝑗ℎ𝑗‖𝛼
2 (by Burkholder’s inequality, not trivial?)

◦ = 𝑐𝛼 σ𝑗=1
𝑛 ℎ𝑗

2σ𝑘=0
∞ 𝒫0𝑋𝑘 𝛼 (by ℒ𝛼 stationarity)

◦ By blocking, σ𝑗=1
𝑛 ℎ𝑗

2 ≤ σ𝑘=1
𝑚 σ

𝑗=𝑎𝑘

𝑎𝑘+1−1ℎ𝑗
2 ≤ σ𝑘=1

𝑚 σ
𝑗=𝑎𝑘

𝑎𝑘+1−1 𝑎𝑘+1 − 𝑎𝑘
4 = σ𝑘=1

𝑚 𝑎𝑘+1 − 𝑎𝑘
5

◦ Hence 𝑈𝑛 𝛼 = 𝑂 1 σ𝑘=1
𝑚 𝑎𝑘+1 − 𝑎𝑘 5 (by σ𝑖=0

∞ 𝒫0𝑋𝑖 𝛼 < ∞)

27



Proof of moment convergence: 
summary of techniques

Begin with martingale approximation

◦ Cater for dependence in time series

◦ Projection decomposition available as MDS (𝑋𝑗 = σ𝑘=0
∞ 𝒫𝑗−𝑘𝑋𝑗)

◦ Enable the use of ergodic theorem for moment convergence

◦ WLLN under dependence. Check theorem 7.12 and 7.21 in Keith’s STAT4010

◦ Handle approximation difference with norm and little o (e.g. 𝑌𝑘 and ෨𝑌𝑘)

◦ MDS is uncorrelated

Handle remainder term (e.g. 𝑉𝑛 vs 𝑉𝑎𝑚)

◦ By blocking and assumption on growth rate of start of block 𝑎𝑚
◦ Suitable for subsampling or even general time series (e.g. m-dependent)

◦ Allow sharper bound to be derived. See proof related to σ𝑘=1
𝑚 𝑌𝑘 − ෨𝑌𝑘 𝛼

2

. Also check lemma 1 in Liu and Wu (2010)

◦ Bounding a weighted sum, which may be useful for say SLLN. See proof related to 𝑈𝑛. Also check Kronecker's lemma
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Convergence 
rate, 2 < 𝛼 ≤ 4

SECTION 3.2.1
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Convergence rate (p.8)

Theorem 2: let 𝑎𝑘 = 𝑐𝑘𝑝 , 𝑘 ≥ 1 where 𝑐 > 0 and 𝑝 > 1 are constants

Theorem 2.1: assume that 𝑋𝑖 ∈ ℒ𝛼, 𝐸 𝑋𝑖 = 0 and Δ𝛼 = σ𝑗=0
∞ 𝛿𝛼 𝑗 < ∞ for some 𝛼 ∈ (2,4]

◦ Then 𝑉𝑛 − 𝐸 𝑉𝑛 𝛼

2
= 𝑂 𝑛

3

2
−

3

2𝑝
+
2

𝛼

Theorem 2.2: assume that 𝑋𝑖 ∈ ℒ𝛼, 𝐸 𝑋𝑖 = 0 and Δ𝛼 = σ𝑗=0
∞ 𝛿𝛼 𝑗 < ∞ for some 𝛼 > 4

◦ Then lim
𝑛՜∞

𝑉𝑛−𝐸 𝑉𝑛

𝑛
2−

3
2𝑝

=
𝜎2𝑝2𝑐

3
2𝑝

12𝑝−9

Theorem 2.3: if 𝑋𝑖 ∈ ℒ
2, 𝐸 𝑋𝑖 = 0 and σ𝑗=0

∞ 𝑗𝑞𝜔 𝑗 < ∞ for some 𝑞 ∈ (0,1]

◦ Then 𝐸 𝑉𝑛 − 𝑣𝑛𝜎
2 = 𝑂 𝑛

1+ 1−𝑞 1−
1

𝑝

◦ Consequently, if theorem 2.1 also holds, then 𝑉𝑛 − 𝑣𝑛𝜎
2

𝛼

2
= 𝑂 𝑛𝜙

◦ 𝜙 = max
3

2
−

3

2𝑝
+

2

𝛼
, 1 + 1 − 𝑞 1 −

1

𝑝

◦ σ𝑗=1
∞ 𝑗𝑞𝛿𝛼 𝑗 < ∞ is sufficient
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Optimal convergence rate (p.8)

To achieve optimal convergence, we should minimize 𝜙 = max
3

2
−

3

2𝑝
+

2

𝛼
, 1 + 1 − 𝑞 1 −

1

𝑝

◦ Theorem 2 guides us to choose p based on 𝑞 (dependence condition) and 𝛼 (moment condition)

◦ A good p should minimize 𝑛
3

2
−

3

2𝑝
+
2

𝛼 + 𝑛
1+ 1−𝑞 1−

1

𝑝 , which also minimize 𝜙

◦ Set 
3

2
−

3

2𝑝
+

2

𝛼
= 1 + 1 − 𝑞 1 −

1

𝑝
and solve for 𝑝

◦ The rationale is that the optimal rate should be the same regardless of conditions which are hard to verify?

◦ We have 𝑝 =
1

2
+𝑞

𝑞−
1

2
+
2

𝛼

(denominator should be 𝑞 −
1

2
+

2

𝛼
, probably typo in the paper)

Corollary 2: Let 𝑝 =
1

2
+𝑞

𝑞−
1

2
+
2

𝛼

. Under conditions of theorem 2, 
𝑉𝑛

𝑣𝑛
− 𝜎2

𝛼

2

= 𝑂 𝑛
2

𝛼
−
1

2
−

1

2𝑝

◦ In particular, if 𝛼 = 4 and 𝑞 = 1, then 𝑝 =
3

2
and 

𝑉𝑛

𝑣𝑛
− 𝜎2

2
= 𝑂 𝑛−

1

3
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Convergence rate when 𝜇 ≠ 0 (p.9)

Note that 𝑣𝑛 ∼ 𝑣𝑎𝑚 ∼
1

2
σ𝑖=2
𝑚 𝑎𝑖 − 𝑎𝑖−1

2 (by blocking)

◦ ∼
1

2
σ𝑖=2
𝑚 𝑐2𝑝2𝑖2𝑝−2 (by considering the differential 𝑎𝑖 − 𝑎𝑖−1 ∼ 𝑐𝑝𝑖𝑝−1)

◦ ∼
𝑐2𝑝2𝑚2𝑝−1

4𝑝−2
(by approximating sum Σ𝑥=2

𝑚 with integral 2
𝑚
𝑑𝑥)

◦ ∼
𝑐
1
𝑝𝑝2

4𝑝−2
𝑛
2−

1

𝑝 = 𝑂 𝑛
2−

1

𝑝 (by 𝑛 ∼ 𝑐𝑚𝑝 ⇒ 𝑚 ∼
𝑛

𝑐

1

𝑝
)

Corollary 2 also applies to 
𝑉𝑛
′

𝑣𝑛
since 

1

𝑣𝑛
𝑉𝑛 − 𝑉𝑛

′
𝛼

2
= 𝑂 𝑛

−
1

𝑝 and −
1

𝑝
<

2

𝛼
−

1

2
−

1

2𝑝

◦ This implies the difference 𝑉𝑛 − 𝑉𝑛
′ cannot be the dominating term

◦ See remark 4 in paper for proof of 
1

𝑣𝑛
𝑉𝑛 − 𝑉𝑛

′
𝛼

2
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Proof of theorem 2.1: 

𝑉𝑛 − 𝐸 𝑉𝑛 𝛼

2
= 𝑂 𝑛

3

2
−

3

2𝑝
+
2

𝛼 (p.17-18)

Recall 𝑉𝑛 = σ𝑖=1
𝑛 𝑊𝑖

2. Note that 𝑉𝑛 − 𝐸 𝑉𝑛 𝛼

2
≤ σ𝑖=1

𝑛 𝑊𝑖
2

𝛼

2

(𝑉𝑛 is non-negative)

◦ = σ𝑖=1
𝑛 σ𝑘=0

∞ 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

(by 𝑊𝑖
2 = σ𝑘=0

∞ 𝒫𝑖−𝑘𝑊𝑖
2)

◦ ≤ σ𝑘=0
∞ σ𝑖=1

𝑛 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

(by Minkowski inequality)

◦ It suffices to find the order of σ𝑖=1
𝑛 𝒫𝑖−𝑘𝑊𝑖

2
𝛼
2

Blocking: let 𝑏𝑚 = 1 + 𝑐 𝑝2𝑝𝑚𝑝−1

◦ It can be shown that 𝑖 − 𝑡𝑖 ≤ 𝑎𝑚+1 − 1 − 𝑎𝑚 ≤ 𝑏𝑚 ∀𝑚 ∈ ℕ

◦ Obviously the functional of 𝑏𝑚 is chosen by solving this inequality

◦ This also means that 𝑏𝑚 is the bound of block size and batch size

◦ σ𝑘=0
∞ σ𝑖=1

𝑛 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

= σ𝑘=2𝑏𝑚
∞ σ𝑖=1

𝑛 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

+ σ𝑘=0
2𝑏𝑚−1 σ𝑖=1

𝑛 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2
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Proof of theorem 2.1: 

bound of σ𝑖=1
𝑛 𝒫𝑖−𝑘𝑊𝑖

2
𝛼

2

𝛼

2 (p.17)

Recall that 𝑊𝑖 = 𝑋𝑡𝑖 + 𝑋𝑡𝑖+1 +⋯+ 𝑋𝑖. Let 𝑊𝑖
∗ = 𝑋𝑡𝑖

′ + 𝑋𝑡𝑖+1
′ +⋯+ 𝑋𝑖

′ (coupled batch sum)

◦ Since 𝜖0
′ ⊥ 𝜖𝑖 , 𝑖 ∈ ℤ, we have 𝐸 𝑋𝑖 ℱ−1 = 𝐸 𝑋𝑖

′ ℱ−1 = 𝐸 𝑋𝑖
′ ℱ0

◦ Stability assumption Δ𝛼 < ∞ implies weak stability Θ𝛼 < ∞

◦ By theorem 1 in Wu (2007), 𝑊𝑖 𝛼 ≤ 𝑐𝛼Θ𝛼 𝑖 − 𝑡𝑖 + 1 (moment inequality)

◦ Now 𝒫0𝑊𝑖
2

𝛼

2

= 𝐸 𝑊𝑖
2 ℱ0 − 𝐸 𝑊𝑖

2 ℱ−1 𝛼

2

(definition of projection)

◦ = 𝐸 𝑊𝑖
2 ℱ0 − 𝐸 𝑊𝑖

∗ 2 ℱ0 𝛼

2

(property of coupled batch sum)

◦ ≤ 𝑊𝑖
2 − 𝑊𝑖

∗ 2
𝛼

2

(by Jensen’s inequality and tower property)

◦ ≤ 𝑊𝑖 +𝑊𝑖
∗

𝛼 𝑊𝑖 −𝑊𝑖
∗

𝛼 (by Cauchy–Schwarz inequality)

◦ ≤ 2 𝑊𝑖 𝛼σ𝑗=𝑡𝑖
𝑖 𝛿𝛼 𝑗 (property of coupled batch sum and definition of physical dependence)

◦ ≤ 2𝑐𝛼Θ𝛼 𝑖 − 𝑡𝑖 + 1σ𝑗=𝑡𝑖
𝑖 𝛿𝛼 𝑗 (by moment inequality)
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Proof of theorem 2.1: 

bound of σ𝑖=1
𝑛 𝒫𝑖−𝑘𝑊𝑖

2
𝛼

2

𝛼

2 (p.17)

Similarly for 𝑘 ≥ 0, 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

≤ 2𝑐𝛼Θ𝛼 𝑖 − 𝑡𝑖 + 1σ𝑗=𝑡𝑖
𝑖 𝛿𝛼 𝑘 + 𝑡𝑖 − 𝑗

◦ Note that 𝒫𝑖−𝑘𝑊𝑖
2, 𝑖 ∈ ℤ form MDS, so σ𝑖=1

𝑛 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

𝛼

2

◦ ≤ 𝑐𝛼 σ𝑖=1
𝑛 𝒫𝑖−𝑘𝑊𝑖

2
𝛼

2

𝛼

2 (by Burkholder’s inequality)

◦ ≤ 𝑐𝛼Θ𝛼

𝛼

2 σ𝑖=1
𝑛 𝑖 − 𝑡𝑖 + 1σ𝑗=𝑡𝑖

𝑖 𝛿𝛼 𝑘 + 𝑡𝑖 − 𝑗
𝛼

2 (by moment inequality)
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Proof of theorem 2.1: 

𝑉𝑛 − 𝐸 𝑉𝑛 𝛼

2
= 𝑂 𝑛

3

2
−

3

2𝑝
+
2

𝛼 (p.18)

Consider first term from blocking σ𝑘=0
∞ σ𝑖=1

𝑛 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

, σ𝑘=2𝑏𝑚
∞ σ𝑖=1

𝑛 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

◦ ≤ 𝑂(1)σ𝑘=2𝑏𝑚
∞ σ𝑖=1

𝑛 𝑖 − 𝑡𝑖 + 1σ𝑗=0
𝑏𝑚 𝛿𝛼 𝑘 − 𝑗

𝛼

2

2

𝛼

(by moment inequality in last slide)

◦ The summation index can be change since 𝑖 − 𝑡𝑖 ≤ 𝑏𝑚 and 𝑘 − 𝑏𝑚 > 0

◦ ≤ 𝑂 1 σ𝑖=1
𝑛 𝑖 − 𝑡𝑖 + 1

𝛼

4

2

𝛼
σ𝑘=2𝑏𝑚
∞ σ𝑗=0

𝑏𝑚 𝛿𝛼 𝑘 − 𝑗 (by independence of summation index)

◦ The inequality sign in this step should be equal?

◦ = 𝑂 𝑛
2

𝛼𝑏𝑚

1

2 𝑜 𝑏𝑚 (by 𝑖 − 𝑡𝑖 ≤ 𝑏𝑚 and Δ𝛼 = σ𝑗=0
∞ 𝛿𝛼 𝑗 < ∞)

◦ = 𝑜 𝑛
2

𝛼𝑏𝑚

3

2

◦ = 𝑜 𝑛
2

𝛼
+
3

2
−
3

2𝑝 (since 𝑏𝑚 = 𝑂 𝑚
1

𝑝 = 𝑂 𝑛
1−

1

𝑝 )
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Proof of theorem 2.1: 

𝑉𝑛 − 𝐸 𝑉𝑛 𝛼

2
= 𝑂 𝑛

3

2
−

3

2𝑝
+
2

𝛼 (p.18)

Consider second term from blocking, σ𝑘=0
2𝑏𝑚−1 σ𝑖=1

𝑛 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

◦ ≤ 𝑂 1 σ𝑖=1
𝑛 𝑖 − 𝑡𝑖 + 1

𝛼

4

2

𝛼
σ𝑘=0
2𝑏𝑚−1σ𝑗=𝑡𝑖

𝑖 𝛿𝛼 𝑘 + 𝑡𝑖 − 𝑗 (same steps as last slide)

◦ = σ𝑖=1
𝑛 𝑖 − 𝑡𝑖 + 1

𝛼

4

2

𝛼
𝑂 𝑏𝑚 (use big O because summation index cannot be changed)

◦ = 𝑂 𝑛
2

𝛼
+
3

2
−

3

2𝑝 (same steps as last slide)

Hence σ𝑘=0
∞ σ𝑖=1

𝑛 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

= 𝑜 𝑛
2

𝛼
+
3

2
−

3

2𝑝 + 𝑂 𝑛
2

𝛼
+
3

2
−

3

2𝑝

◦ = 𝑂 𝑛
2

𝛼
+
3

2
−

3

2𝑝 + 𝑂 𝑛
2

𝛼
+
3

2
−

3

2𝑝 (little o implies big O)

◦ = 𝑂 𝑛
2

𝛼
+
3

2
−

3

2𝑝
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Proof of theorem 2.1: 
summary of techniques

Asymptotic approximation

◦ Approximate finite difference and sum by differential and integral

◦ Be aware of the definition of Riemann sum (e.g. you may need to perform change of variable)

◦ Identify the dominating term

◦ Blocking: relate number of blocks 𝑚 with sample size 𝑛

Handle multiple sum

◦ By blocking and bounding each block size

◦ Terms in a double sum may becomes independent. See last two slides

◦ Break down power into product with maximum

◦ E.g. σ𝑡=1
𝑛 𝑡𝑝 ≤ max

1≤𝑡≤𝑛
𝑡 σ𝑡=1

𝑛 𝑡𝑝−1
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Convergence 
rate, 𝛼 > 4

SECTION 3.2.2
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Proof of theorem 2.2: lim
𝑛՜∞

𝑉𝑛−𝐸 𝑉𝑛

𝑛
2−

3
2𝑝

=
𝜎2𝑝2𝑐

3
2𝑝

12𝑝−9
(p.20)

Notice that the condition changes from Δ𝛼 < ∞ for some 𝛼 ∈ (2,4] (T2.1) to 𝛼 > 4 (T2.2)

◦ But the convergence rate is same for 𝛼 = 4 (T2.1) and 𝛼 > 4 (T2.2)

◦ This means stronger moment conditions cannot give faster convergence rate. See moment inequality (previous slide p.20)

◦ Theorem 2.2 gives a close form of asymptotic MSE (AMSE) though

◦ 𝑉𝑛 − 𝐸 𝑉𝑛 = 𝐸 𝑉𝑛 − 𝐸 𝑉𝑛
2, which can give us MSE after some modifications

◦ Proof of T2.2 requires the use of lemma 1, which we shall prove later

Lemma 1: assume 𝑋𝑖 ∈ ℒ𝛼, 𝐸(𝑋𝑖 = 0) and Δ𝛼 < ∞ for 𝛼 > 4 (conditions of T2.2)

◦ Let 𝑆𝑖 = σ𝑗=1
𝑖 𝑋𝑗 (the subscript should be 𝑗, probably typo in the paper)

◦ Then σ𝑖=1
𝑙 𝐸 𝑆𝑖

2 ℱ1 − 𝐸 𝑆𝑖
2 = 𝑜 𝑙2

◦ We also have lim
𝑙՜∞

1

𝑙4
σ𝑖=1
𝑙 𝑆𝑖

2 − 𝐸 𝑆𝑖
2 2

=
1

3
𝜎4
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Proof of theorem 2.2: lim
𝑛՜∞

𝑉𝑛−𝐸 𝑉𝑛

𝑛
2−

3
2𝑝

=
𝜎2𝑝2𝑐

3
2𝑝

12𝑝−9
(p.18)

Let block sum of square 𝐺ℎ+1 = σ
𝑖=𝑎ℎ

𝑎ℎ+1−1𝑊𝑖
2 (target is 𝑉𝑎𝑚+1

= σℎ=1
𝑚 𝐺ℎ+1)

◦ It differs from ෨𝑌𝑘 in the sense that martingale approximation is not used

◦ By lemma 1, lim
ℎ՜∞

1

𝑎ℎ+1−𝑎ℎ
4 𝐺ℎ+1 − 𝐸 𝐺ℎ+1 ℱ𝑎ℎ

2
=

1

3
𝜎4

◦ Since 𝐺ℎ+1 − 𝐸 𝐺ℎ+1 ℱ𝑎ℎ is MDS wrt ℱ𝑎ℎ+1,  we have σℎ=1
𝑚 𝐺ℎ+1 − 𝐸 𝐺ℎ+1 ℱ𝑎ℎ

2

◦ = σℎ=1
𝑚 𝐸 𝐺ℎ+1 − 𝐸 𝐺ℎ+1 ℱ𝑎ℎ

2
(MDS is uncorrelated)

◦ ∼
1

3
𝜎4σℎ=1

𝑚 𝑎ℎ+1 − 𝑎ℎ
4 (by lemma 1)

◦ ∼
1

3
𝜎4σℎ=1

𝑚 𝑐4𝑝4ℎ4𝑝−4 (by considering the differential 𝑎ℎ − 𝑎ℎ−1 ∼ 𝑐𝑝ℎ𝑝−1)

◦ ∼
𝑝4𝑐4

3(4𝑝−3)
𝑚4𝑝−3𝜎4 (by approximating sum Σ𝑥=1

𝑚 with integral 1
𝑚
𝑑𝑥)

◦ ∼
𝑝4𝑐

3
𝑝

12𝑝−9
𝑛
4−

3

𝑝𝜎4 (by 𝑛 ∼ 𝑐𝑚𝑝 ⇒ 𝑚 ∼
𝑛

𝑐

1

𝑝
)

41



Proof of theorem 2.2: lim
𝑛՜∞

𝑉𝑛−𝐸 𝑉𝑛

𝑛
2−

3
2𝑝

=
𝜎2𝑝2𝑐

3
2𝑝

12𝑝−9
(p.18-19)

Similarly, σℎ=1
𝑚 𝐸 𝐺ℎ+1 ℱ𝑎ℎ − 𝐸 𝐺ℎ+1 ℱ𝑎ℎ−1

2

◦ = σℎ=1
𝑚 𝐸 𝐸 𝐺ℎ+1 ℱ𝑎ℎ − 𝐸 𝐺ℎ+1 ℱ𝑎ℎ−1

2
(MDS is uncorrelated)

◦ ≤ σℎ=1
𝑚 𝐸 𝐸 𝐺ℎ+1 ℱ𝑎ℎ − 𝐸 𝐺ℎ+1

2
(by towering and Eve’s law)

◦ = σℎ=1
𝑚 𝑜 𝑎ℎ+1 − 𝑎ℎ

4 = 𝑜 𝑛
4−

3

𝑝 (by lemma 1 and result in last slide)

Now deal with Ξ𝑚 ≝ σℎ=1
𝑚 𝐸 𝐺ℎ+1 ℱ𝑎ℎ−1 − 𝐸 𝐺ℎ+1

◦ The goal of Ξ𝑚 is to connect everything for σℎ=1
𝑚 𝐺ℎ+1 − 𝐸 𝐺ℎ+1 = 𝑉𝑎𝑚 − 𝐸 𝑉𝑎𝑚

◦ Since 𝐸 𝑊𝑖
2 ℱ𝑎ℎ−1 − 𝐸 𝑊𝑖

2 = σ𝑘=0
∞ 𝒫𝑖−𝑘𝐸 𝑊𝑖

2 ℱ𝑎ℎ−1 for 𝑎ℎ ≤ 𝑖 < 𝑎ℎ+1
◦ This follows from definition of projection and tower property

◦ We have Ξ𝑚 ≤ σ𝑘=0
∞ σℎ=1

𝑚 σ
𝑖=𝑎ℎ

𝑎ℎ+1−1𝒫𝑖−𝑘𝐸 𝑊𝑖
2 ℱ𝑎ℎ−1 (by Minkowski inequality)

◦ = σ𝑘=0
∞ σℎ=1

𝑚 σ
𝑖=𝑎ℎ

𝑎ℎ+1−1𝐸 𝒫𝑖−𝑘𝐸 𝑊𝑖
2 ℱ𝑎ℎ−1

2
(by linearity of expectation and property of MDS)
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Proof of theorem 2.2: lim
𝑛՜∞

𝑉𝑛−𝐸 𝑉𝑛

𝑛
2−

3
2𝑝

=
𝜎2𝑝2𝑐

3
2𝑝

12𝑝−9
(p.19)

Observe that 𝒫𝑖−𝑘𝐸 𝑊𝑖
2 ℱ𝑎ℎ−1 = ൝

0, 𝑖 − 𝑘 > 𝑎ℎ−1
𝒫𝑖−𝑘𝑊𝑖

2, 𝑖 − 𝑘 ≤ 𝑎ℎ−1
(by property of projection)

◦ Hence σ𝑘=2𝑏𝑚
∞ σℎ=1

𝑚 σ
𝑖=𝑎ℎ

𝑎ℎ+1−1𝐸 𝒫𝑖−𝑘𝐸 𝑊𝑖
2 ℱ𝑎ℎ−1

2

◦ ≤ 𝑂(1)σ𝑘=2𝑏𝑚
∞ σℎ=1

𝑚 σ
𝑖=𝑎ℎ

𝑎ℎ+1−1 𝑖 − 𝑡𝑖 + 1 σ
𝑗=0
𝑏𝑚 𝛿4 𝑗

2
(mimic proof of σ𝑘=2𝑏𝑚

∞ σ𝑖=1
𝑛 𝒫𝑖−𝑘𝑊𝑖

2
𝛼

2

)

◦ = 𝑂 𝑛
1

2𝑏𝑚

1

2 𝑜 𝑏𝑚 = 𝑜 𝑛
2−

3

2𝑝 (mimic proof of σ𝑘=2𝑏𝑚
∞ σ𝑖=1

𝑛 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

)

43



Proof of theorem 2.2: lim
𝑛՜∞

𝑉𝑛−𝐸 𝑉𝑛

𝑛
2−

3
2𝑝

=
𝜎2𝑝2𝑐

3
2𝑝

12𝑝−9
(p.19)

Now consider σ𝑘=0
2𝑏𝑚−1 σℎ=1

𝑚 σ
𝑖=𝑎ℎ

𝑎ℎ+1−1𝐸 𝒫𝑖−𝑘𝐸 𝑊𝑖
2 ℱ𝑎ℎ−1

2

◦ ≤ 𝑂(1)σ𝑘=2𝑏𝑚
∞ σℎ=1

𝑚 σ
𝑖=𝑎ℎ

𝑎ℎ+1−1 𝑖 − 𝑡𝑖 + 1 σ𝑗=𝑘+𝑡𝑖−𝑖
𝑖 𝛿4 𝑗

2
𝕀 𝑖 − 𝑘 ≤ 𝑎ℎ−1 (mimic proof of 𝒫𝑖−𝑘𝑊𝑖

2
𝛼

2

)

◦ = 𝑂(1)σ𝑘=2𝑏𝑚
∞ σℎ=1

𝑚 σ
𝑖=𝑎ℎ

𝑎ℎ+1−1 𝑖 − 𝑡𝑖 + 1 Δ4
2 𝑎ℎ − 𝑎ℎ−1 (by definition of stability, not multiply!)

◦ = 𝑂(1)σ𝑘=2𝑏𝑚
∞ σℎ=1

𝑚 𝑎ℎ+1 − 𝑎ℎ 2Δ4
2 𝑎ℎ − 𝑎ℎ−1 (by blocking)

◦ = 𝑂(1)σ𝑘=2𝑏𝑚
∞ σℎ=1

𝑚 𝑎ℎ+1 − 𝑎ℎ 2𝑜(1) (by Δ4
2 𝑎ℎ − 𝑎ℎ−1 ՜ 0 as 𝑎ℎ − 𝑎ℎ−1 ՜ ∞)

◦ = 𝑂(1)σ𝑘=2𝑏𝑚
∞ σℎ=1

𝑚 𝑜 ℎ2𝑝−2 (by 𝑎ℎ − 𝑎ℎ−1 = 𝑂 ℎ𝑝−1 )

◦ = 𝑜 𝑏𝑚𝑚
𝑝−

1

2 = 𝑜 𝑛
2−

3

2𝑝 (by 𝑏𝑚 = 𝑂 𝑛
1−

1

𝑝 and 𝑚 ∼
𝑛

𝑐

1

𝑝
)
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Proof of theorem 2.2: lim
𝑛՜∞

𝑉𝑛−𝐸 𝑉𝑛

𝑛
2−

3
2𝑝

=
𝜎2𝑝2𝑐

3
2𝑝

12𝑝−9
(p.19)

We have proved lim
𝑛՜∞

σℎ=1
𝑚 𝐺ℎ+1−𝐸 𝐺ℎ+1 ℱ𝑎ℎ

𝑛
2−

3
2𝑝

=
𝜎2𝑝2𝑐

3
2𝑝

12𝑝−9
(four slides ago)

◦ σℎ=1
𝑚 𝐺ℎ+1 − 𝐸 𝐺ℎ+1 ℱ𝑎ℎ ≍ σℎ=1

𝑚 𝐺ℎ+1 − 𝐸 𝐺ℎ+1 = 𝑉𝑎𝑚+1
− 𝐸 𝑉𝑎𝑚+1

(last three slides)

◦ It remains to show that 𝑉𝑎𝑚+1
− 𝐸 𝑉𝑎𝑚+1

≍ 𝑉𝑛 − 𝐸 𝑉𝑛

◦ Now consider the remainder term σ𝑖=𝑛
𝑎𝑚+1−1 𝑊𝑖

2 − 𝐸 𝑊𝑖
2

◦ ≤ σ
𝑖=𝑛
𝑎𝑚+1−1 𝑊𝑖

2 − 𝐸 𝑊𝑖
2 (by Minkowski inequality)

◦ ≤ σ𝑖=𝑛
𝑎𝑚+1−1 𝑊𝑖

2 (since 𝑊𝑖
2 is non negative)

◦ = 𝑂(𝑏𝑚
2 ) (recall the sum is a isosceles triangular shaped)

◦ = 𝑂 𝑛
2−

2

𝑝 ≪ 𝑜 𝑛
2−

3

2𝑝 (by 𝑏𝑚 = 𝑂 𝑛
1−

1

𝑝 and 𝑝 > 1)
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Proof of lemma 1:
σ𝑖=1
𝑙 𝐸 𝑆𝑖

2 ℱ1 − 𝐸 𝑆𝑖
2 = 𝑜 𝑙2 (p.20)

Recall 𝑆𝑖 = σ𝑗=1
𝑖 𝑋𝑗. Mimicking proof of 𝒫𝑖−𝑘𝑊𝑖

2
𝛼

2

, we have 

◦ 𝒫𝑟𝑆𝑖
2 ≤ 𝐶 𝑖 σ𝑗=1

𝑖 𝛿2 𝑗 − 𝑟 for 𝑟 ≤ 1 where 𝐶 = 2𝑐2Θ2

◦ Since σ𝑖=1
𝑙 𝐸 𝑆𝑖

2 ℱ1 − 𝐸 𝑆𝑖
2 = σ𝑟=−∞

1 σ𝑖=1
𝑙 𝒫𝑟𝑆𝑖

2 (definition of projection), we have

◦ σ𝑖=1
𝑙 𝐸 𝑆𝑖

2 ℱ1 − 𝐸 𝑆𝑖
2 2

= σ𝑟=−∞
1 σ𝑖=1

𝑙 𝒫𝑟𝑆𝑖
2 2

(MDS is uncorrelated)

◦ ≤ σ𝑟=−∞
1 σ𝑖=1

𝑙 𝒫𝑟𝑆𝑖
2 2

(by Minkowski inequality)

◦ ≤ σ𝑟=−∞
1 𝐶𝑙

3

2σ𝑗=1
𝑙 𝛿2 𝑗 − 𝑟

2

(by inequality above and bounding σ𝑗=1
𝑖 𝛿2 𝑗 − 𝑟 with 𝑙𝛿2 𝑗 − 𝑟 )

◦ Is it possible that σ𝑗=1
𝑖 𝛿2 𝑗 − 𝑟 > 𝑙 ⇒ σ𝑖=1

𝑙 σ𝑗=1
𝑖 𝛿2 𝑗 − 𝑟 > 𝑙 σ𝑗=1

𝑙 𝛿2 𝑗 − 𝑟 ? Then this step do not hold

◦ However the result is still correct by considering σ𝑖=1
𝑙 σ𝑗=1

𝑖 𝛿2 𝑗 − 𝑟 ≤ σ𝑗=1
𝑙 𝛿2 𝑗 − 𝑟

2

◦ ≤ 𝐶2𝑙3Δ2σ𝑗=1
𝑙 σ𝑟=−∞

1 𝛿2 𝑗 − 𝑟 (by σ𝑗=1
𝑙 𝛿2 𝑗 − 𝑟

2
≤ Δ2σ𝑗=1

𝑙 𝛿2 𝑗 − 𝑟 )

◦ = 𝑂 𝑙3 𝑜 𝑙 = 𝑜(𝑙4) (by Δ𝛼 < ∞ for 𝛼 > 4)
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Proof of lemma 1:

lim
𝑙՜∞

1

𝑙4
σ𝑖=1
𝑙 𝑆𝑖

2 − 𝐸 𝑆𝑖
2 2

=
1

3
𝜎4 (p.21)

Let 𝐴𝑙 =
1

𝑙2
σ𝑖=1
𝑙 𝑆𝑖

2. By invariance principle and continuous mapping theorem,

◦ 𝐴𝑙՜
𝑑
𝜎2 0

1
𝑊𝑡

2𝑑𝑡 (continuous mapping changes sum to integral, probably typo for IB)

◦ By theorem 1 in Wu (2007), 𝑆𝑖 𝛼 = 𝑂 𝑖 (moment inequality)

◦ Hence 𝐴𝑙 𝛼

2
≤

1

𝑙2
σ𝑖=1
𝑙 𝑆𝑖

2
𝛼

2

(by Minkowski inequality)

◦ ≤
1

𝑙2
σ𝑖=1
𝑙 𝑆𝑖 𝛼

2 (by definition of norm, should be equal?)

◦ =
1

𝑙2
σ𝑖=1
𝑙 𝑂(𝑖) = 𝑂(1) (by moment inequality)

◦ Since 
𝛼

2
> 2, 𝐴𝑙 − 𝐸 𝐴𝑙

2, 𝑙 ≥ 1 is uniformly integrable (Chow and Teicher, 1988)

◦ Hence weak convergence of 𝐴𝑙 implies the ℒ2 moment convergence, which is

◦ 𝐸 𝐴𝑙 − 𝐸 𝐴𝑙
2 ՜ 𝜎4𝐸 

0

1
𝑊𝑡

2 − 𝐸 𝑊𝑡
2 𝑑𝑡

2
=

1

3
𝜎4 (by stochastic calculus, not trivial…)
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Proof of lemma 1: 

𝐸 0
1
𝑊𝑡

2 − 𝐸 𝑊𝑡
2 𝑑𝑡

2
=

1

3

Let 𝑓 𝑡,𝑤 =
1

6
𝑤4. We have 

𝜕𝑓

𝜕𝑡
= 0, 

𝜕𝑓

𝜕𝑤
=

2

3
𝑤3 and

𝜕2𝑓

𝜕𝑤2 = 2𝑤2. Note that 𝜇 = 0 and 𝜎 = 1.

◦ 𝑑𝑓 𝑡,𝑊𝑡 =
𝜕𝑓

𝜕𝑡
+ 𝜇

𝜕𝑓

𝜕𝑊𝑡
+

1

2
𝜎2

𝜕2𝑓

𝜕𝑊𝑡
2 𝑑𝑡 + 𝜎

𝜕𝑓

𝜕𝑊𝑡
𝑑𝑊𝑡 = 𝑊𝑡

2𝑑𝑡 +
2

3
𝑊𝑡

3𝑑𝑊𝑡 (by Itô’s lemma)

◦ Rearranging the terms, 0
1
𝑊𝑡

2𝑑𝑡 =
1

6
𝑊1

4 −
2

3
0
1
𝑊𝑡

3𝑑𝑊𝑡 =
1

2
+

1

3
𝑍 where 𝑍 ∼ 𝑁(0,1)

◦ 𝐸 0
1
𝑊𝑡

2𝑑𝑡 =
1

6
𝐸 𝑊1

4 =
3‼

6
=

1

2
(by martingale property and 𝐸 𝑋2𝑛 = 𝜎2𝑛 2𝑛 − 1 ‼ if 𝑋 ∼ 𝑁(0, 𝜎2). See this Q&A)

◦ 𝐸 0
1
𝑊𝑡

2𝑑𝑡
2
= 𝐸 0

1
0
1
𝑊𝑡

2𝑊𝑠
2𝑑𝑡𝑑𝑠 = 0

1
0
1
𝐸 𝑊𝑡

2𝑊𝑠
2 𝑑𝑡𝑑𝑠 (by Fubini’s theorem)

◦ = 0
1
0
𝑠
𝐸 𝑊𝑠 −𝑊𝑡

2𝑊𝑡
2 + 2 𝑊𝑠 −𝑊𝑡 𝑊𝑡

3 +𝑊𝑡
4 𝑑𝑡𝑑𝑠 + 0

1
𝑠
1
𝐸 𝑊𝑡 −𝑊𝑠

2𝑊𝑠
2 + 2 𝑊𝑡 −𝑊𝑠 𝑊𝑠

3 +𝑊𝑠
4 𝑑𝑡𝑑𝑠

◦ = 0
1
0
𝑠
𝑠 − 𝑡 𝑡 + 3𝑡2 𝑑𝑡𝑑𝑠 + 0

1
𝑠
1
𝑡 − 𝑠 𝑠 + 3𝑠2 𝑑𝑡𝑑𝑠 (by independent increment and 𝐸 𝑋2𝑛+1 = 0 if 𝑋 ∼ 𝑁(0, 𝜎2))

◦ =
7

24
+

7

24
=

7

12
, so 𝑉𝑎𝑟 0

1
𝑊𝑡

2𝑑𝑡 =
7

12
−

1

4
=

1

3

◦ On the other hand, 0
1
𝐸 𝑊𝑡

2 𝑑𝑡 = 0
1
𝑡𝑑𝑡 =

1

2
(since 𝑊𝑡 ∼ 𝑁(0, 𝑡))

◦ Hence using representation, 𝐸 
0

1
𝑊𝑡

2 − 𝐸 𝑊𝑡
2 𝑑𝑡

2
= 𝐸

1

3
𝑍2 =

1

3
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Proof of theorem 2.2 and lemma 1: 
summary of techniques

Stochastic calculus (my RMSC5102 note has a quick summary)

◦ Useful when we combine invariance principle and continuous mapping theorem

◦ Break down product of wiener process into sum of independent increment (see last slide)

◦ Vitali convergence theorem: a sequence of random variables converging in probability also converge in the 

mean if and only if they are uniformly integrable

◦ A class of random variables bounded in 𝐿𝑝 , 𝑝 > 1 is uniformly integrable (see two slides ago)

◦ See Theorem 5.5.2 in Probability Theory and Examples by Durrett
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Convergence 
rate, 𝛼 = 2

SECTION 3.2.3
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Proof of theorem 2.3:

𝐸 𝑉𝑛 − 𝑣𝑛𝜎
2 = 𝑂 𝑛

1+ 1−𝑞 1−
1

𝑝 (p.20)

We do not have moment inequality when 𝛼 = 2 (i.e. in ℒ1). Alternative strategy is needed.

◦ Let 𝑗 > 0. To bound the autocovariance, we have 𝛾 𝑗 = 𝐸 𝑋0𝑋𝑗

◦ = 𝐸 σ𝑖∈ℤ 𝒫𝑖𝑋0 𝒫𝑖𝑋𝑗 (projection decomposition, 𝑋𝑗 = σ𝑖∈ℤ𝒫𝑖𝑋𝑗)

◦ ≤ σ𝑖∈ℤ𝐸 𝒫𝑖𝑋0 𝒫𝑖𝑋𝑗 (by Minkowski inequality)

◦ ≤ σ𝑖∈ℤ 𝒫𝑖𝑋0 𝒫𝑖𝑋𝑗 (by Cauchy–Schwarz inequality)

◦ Orthogonality of projection gives a equal sign here but it does not affect the result

◦ ≤ σ𝑖=0
∞ 𝜔 𝑖 𝜔 𝑖 + 𝑗 (by ‖𝒫0𝑋𝑖‖𝑝 ≤ 𝜔𝑝(𝑖) and 𝜔𝑝 𝑖 = 0 if 𝑖 < 0)

For 𝑆𝑙 = 𝑋1 +⋯+ 𝑋𝑙, since σ𝑗=0
∞ 𝑗𝑞𝜔 𝑗 < ∞ for some 𝑞 ∈ (0,1] (by assumption)

◦ We have 𝐸 𝑆𝑙
2 − 𝑙𝜎2 = 𝑙𝛾 0 + 2σ𝑗=1

𝑙 𝑙 − 𝑗 𝛾 𝑗 − 𝑙 σ𝑗∈ℤ 𝛾(𝑗) (by representation of TAVC)

◦ ≤ 2σ𝑗=1
∞ min 𝑗, 𝑙 𝛾 𝑗 (by Minkowski inequality)

◦ ≤ 2σ𝑗=1
∞ min 𝑗, 𝑙 1−𝑞 σ𝑖=0

∞ min 𝑗, 𝑙 𝑞 𝜔 𝑖 𝜔 𝑖 + 𝑗 = 𝑂 𝑙1−𝑞 (by σ𝑗=0
∞ 𝑗𝑞𝜔 𝑗 < ∞)

51



Proof of theorem 2.3:

𝐸 𝑉𝑛 − 𝑣𝑛𝜎
2 = 𝑂 𝑛

1+ 1−𝑞 1−
1

𝑝 (p.20)

Combining the results, we have 𝐸 𝑉𝑛 − 𝑣𝑛𝜎
2 (𝑡𝑛 should be 𝑣𝑛, probably typo)

◦ ≤ σ𝑖=1
𝑛 𝐸 𝑊𝑖 − 𝑖 − 𝑡𝑖 + 1 𝜎2 (by Minkowski inequality)

◦ = σ𝑖=1
𝑛 𝑂 𝑖 − 𝑡𝑖 + 1 1−𝑞 (by 𝐸 𝑆𝑙

2 − 𝑙𝜎2 = 𝑂 𝑙1−𝑞 )

◦ = 𝑂 𝑛𝑏𝑚
1−𝑞

(since 𝑏𝑚 is the bound of batch size)

◦ = 𝑂 𝑛
1+ 1−𝑞 1−

1

𝑝 (by 𝑏𝑚 = 𝑂 𝑛
1−

1

𝑝 )
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Proof of theorem 2.3: 
summary of techniques

Moment inequality is not available in ℒ1

◦ Bound the target using projection decomposition and Wu’s dependence measures

◦ The polynomial decay rate of stability determines convergence rate
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Almost sure 
convergence

SECTION 3.3
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Almost sure convergence (p.9)

Glynn and Whitt (1992) argued that strongly consistent estimate of 𝜎 is needed

◦ For asymptotic validity of sequential confidence intervals

◦ Hence we need to consider the almost sure convergence behaviour for MCMC application

Corollary 3: Under the conditions in corollary 2,

◦ i.e. choose 𝑎𝑘 = 𝑐𝑘𝑝 , 𝑝 =
1

2
+𝑞

𝑞−
1

2
+
2

𝛼

and assume 𝑋𝑖 ∈ ℒ𝛼, 𝐸 𝑋𝑖 = 0 and Δ𝛼 < ∞ for some 𝛼 > 2

◦ Or 𝑋𝑖 ∈ ℒ2, 𝐸 𝑋𝑖 = 0 and σ𝑗=0
∞ 𝑗𝑞𝜔 𝑗 < ∞ for some 𝑞 ∈ (0,1]

◦ We have max
𝑛≤𝑁

𝑉𝑛 − 𝐸 𝑉𝑛 𝛼

2

= 𝑂 𝑁𝜏 log𝑁 where 𝜏 =
3

2
−

3

2𝑝
+

2

𝛼

◦ Note that 𝜏 is the convergence rate from theorem 2

◦ Also 𝑉𝑁 − 𝐸 𝑉𝑁 = 𝑜𝑎.𝑠. 𝑁
𝜏 log𝑁 2 and 

𝑉𝑁

𝑣𝑁
− 𝜎2 = 𝑜𝑎.𝑠. 𝑁

2

𝛼
−
1

2
−

1

2𝑝 log𝑁 2

◦ Possible to improve using strong invariance principle in Berkes, Liu and Wu (2014)?
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Proof of corollary 3:

max
𝑛≤𝑁

𝑉𝑛 − 𝐸 𝑉𝑛 𝛼

2

= 𝑂 𝑁𝜏 log𝑁 (p.21)

Choose 𝑑 ∈ ℕ such that 2𝑑−1 < 𝑁 ≤ 2𝑑 (for the use of Borel-Cantelli lemma later?)

◦ For 1 ≤ 𝑎 < 𝑏, 𝑉𝑎 − 𝑉𝑏 − 𝐸 𝑉𝑏 − 𝑉𝑎 𝛼

2
= σ𝑖=𝑎+1

𝑏 𝑊𝑖
2 − 𝐸 𝑊𝑖

2
𝛼

2

◦ ≤ σ𝑘=0
∞ σ𝑖=𝑎+1

𝑏 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

(by projection decomposition and Minkowski inequality)

◦ = σ𝑘=0
∞ σ𝑖=𝑎

𝑏 𝑖 − 𝑡𝑖 + 1
𝛼

4

2

𝛼
𝑂 𝑏

1−
1

𝑝 (mimic proof of σ𝑘=0
2𝑏𝑚−1 σ𝑖=1

𝑛 𝒫𝑖−𝑘𝑊𝑖
2

𝛼

2

)

◦ = 𝑂 𝑏 − 𝑎
2

𝛼𝑏
1

2
1−

1

𝑝 𝑂 𝑏
1−

1

𝑝 = 𝑂 𝑏 − 𝑎
2

𝛼𝑏
3

2
1−

1

𝑝

◦ Note that the bound of batch/block size is 𝑏𝑚 = 𝑂 𝑛
1−

1

𝑝 and bound of sample size is 𝑏 here
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Proof of corollary 3:

max
𝑛≤𝑁

𝑉𝑛 − 𝐸 𝑉𝑛 𝛼

2

= 𝑂 𝑁𝜏 log𝑁 (p.21-22)

By proposition 1 in Wu (2007), max
𝑛≤2𝑑

𝑉𝑛 − 𝐸 𝑉𝑛
𝛼

2

(maximal inequality)

◦ ≤ σ𝑟=0
𝑑 σ𝑙=1

2𝑑−𝑟 𝑉2𝑟𝑙 − 𝑉2𝑟 𝑙−1 − 𝐸 𝑉2𝑟𝑙 − 𝑉2𝑟 𝑙−1 𝛼

2

𝛼

2

2

𝛼

◦ = σ𝑟=0
𝑑 σ𝑙=1

2𝑑−𝑟𝑂 2𝑟
2

𝛼 2𝑟𝑙
3

2
1−

1

𝑝

𝛼

2

2

𝛼

(by moment inequality proved in last slide)

◦ = σ𝑟=0
𝑑 𝑂 (2𝑟)

1+
3𝛼

4
1−

1

𝑝 σ𝑙=1
2𝑑−𝑟𝑂 𝑙

3𝛼

4
1−

1

𝑝

2

𝛼

(by independence of summation index)

◦ ≤ σ𝑟=0
𝑑 𝑂 (2𝑑)

1+
3𝛼

4
1−

1

𝑝

2

𝛼

(since 𝑙 ≤ 2𝑑−𝑟)

◦ = 𝑂 𝑑 + 1 𝑂 2𝑑
2

𝛼
+
3

2
−

3

2𝑝

◦ = 𝑂 𝑁𝜏 log𝑁 (since 𝜏 =
3

2
−

3

2𝑝
+

2

𝛼
and 𝑁 ≤ 2𝑑 ⇒ log𝑁 ≤ 𝑑)
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Proof of corollary 3:
𝑉𝑁 − 𝐸 𝑉𝑁 = 𝑜𝑎.𝑠. 𝑁

𝜏 log𝑁 2 (p.22)

Note that 
𝛼

2
> 1. From max

𝑛≤𝑁
𝑉𝑛 − 𝐸 𝑉𝑛 𝛼

2

= 𝑂 𝑁𝜏 log𝑁 (proved in last two slides),

◦ We have 
1

2𝑑𝜏𝑑2
𝛼
2

σ𝑑=1
∞ max

𝑛≤2𝑑
𝑉𝑛 − 𝐸 𝑉𝑛

𝛼
2

𝛼
2 = σ𝑑=1

∞ 𝑂 𝑑+1 2𝑑𝜏
𝛼
2

2𝑑𝜏𝑑2
𝛼
2

= σ𝑑=1
∞ 𝑂 𝑑−

𝛼

2 < ∞

◦ Hence 𝑉𝑁 − 𝐸 𝑉𝑁 = 𝑜𝑎.𝑠. 𝑁
𝜏 log𝑁 2 (by Borel-Cantelli lemma)

◦ Borel-Cantelli lemma: for a sequence of events 𝐸1, …, if σ𝑛=1
∞ 𝑃 𝐸𝑛 < ∞, then 𝑃 limsup

𝑛՜∞
𝐸𝑛 = 0

◦ 𝑃
max
𝑛≤𝑁

𝑉𝑛−𝐸 𝑉𝑛

𝑁𝜏 log 𝑁 2 > 𝜖 = 𝐸 𝕀
max
𝑛≤𝑁

𝑉𝑛−𝐸 𝑉𝑛

𝑁𝜏 log 𝑁 2 > 𝜖 for all 𝜖 > 0 (write probability as expectation of indicator)

◦ ≤ 𝐸
max
𝑛≤𝑁

𝑉𝑛−𝐸 𝑉𝑛

𝑁𝜏 log 𝑁
2
𝜖

(by Markov inequality)

◦ ≤
1

𝑁
𝜏𝛼
2 log 𝑁 𝛼

max
𝑛≤2𝑑

𝑉𝑛 − 𝐸 𝑉𝑛
𝛼
2

𝛼
2 (by property of norm and 

𝛼

2
> 1)
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Proof of corollary 3:
𝑉𝑁

𝑣𝑁
− 𝜎2 = 𝑜𝑎.𝑠. 𝑁

2

𝛼
−
1

2
−

1

2𝑝 log𝑁 2 (p.22)

Note that 𝑉𝑁 − 𝐸 𝑉𝑁 = 𝑜𝑎.𝑠. 𝑁
𝜏 log𝑁 2 (proved in last slide)

◦ And 𝐸 𝑉𝑛 − 𝑣𝑛𝜎
2 = 𝑂 𝑛

1+ 1−𝑞 1−
1

𝑝 (theorem 2.3, probably typo in 𝑡𝑛)

◦ By choosing optimal rate 𝑝 =
1

2
+𝑞

𝑞−
1

2
+
2

𝛼

, 𝐸 𝑉𝑁 − 𝑣𝑁𝜎
2 = 𝑂 𝑁𝜏 ≪ 𝑜 𝑁𝜏 log𝑁 2

◦ We have 𝑉𝑁 − 𝑣𝑁𝜎
2 = 𝑜𝑎.𝑠. 𝑁

3

2
−

3

2𝑝
+
2

𝛼 log𝑁 2

◦ Finally recall 𝑣𝑁 = 𝑂 𝑁
2−

1

𝑝 (proved in discussion of convergence rate when 𝜇 ≠ 0)

◦ Hence 
𝑉𝑁

𝑣𝑁
− 𝜎2 = 𝑜𝑎.𝑠. 𝑁

2

𝛼
−
1

2
−

1

2𝑝 log𝑁 2 (little o times big O is little o)
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Proof of corollary 3: 
summary of techniques

Establish almost sure convergence

◦ Use maximal inequality

◦ Apply Borel-Cantelli lemma on maximal with expanding samples

◦ Cantor’s diagonal argument?

◦ Idea: ℒ𝑝 convergence with fast enough convergence rate implies almost sure convergence
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Implementation 
issues
SECTION 4
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Remaining question (p.9)

We can see that choice of block start 𝑎𝑘 uniquely determines property of recursive TAVC

◦ The batch size 𝑙𝑖 is determined by the selection rule (e.g. ΔSR, TSR, PSR)

◦ Under the simple choice 𝑎𝑘 = 𝑐𝑘𝑝 , we have established the optimal choice of p

◦ It suffices to find the optimal choice of 𝑐 in order to minimize AMSE

Assume Δ𝛼 < ∞ for some 𝛼 > 4 and σ𝑗=0
∞ 𝑗𝑞𝜔 𝑗 < ∞ for 𝑞 = 1

◦ Need 𝛼 > 4 for close form of AMSE (T2.2) and 𝑞 = 1 for finite bias

◦ By corollary 2, optimal choice of 𝑝 =
3

2

◦ Choose data driven estimate of 𝑐 by procedure in Bühlmann and Künsch (1999)
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Close form of AMSE (p.10)

Since σ𝑗=0
∞ 𝑗𝜔 𝑗 < ∞, σ𝑖=1

∞ 𝑖 𝛾 𝑖 < ∞ (by bound of autocovariance in proof of T2.3)

◦ As 𝑙 ՜ ∞, 𝐸 𝑆𝑙
2 − 𝑙𝜎2 = −2σ𝑘=1

∞ min 𝑘, 𝑙 𝛾 𝑘 = −2σ𝑘=1
∞ 𝑘𝛾 𝑘 + 𝑜 1 = 𝜃 + 𝑜(1)

◦ Keith (and I) usually denote 𝑣𝑝 ≝ σ𝑘=−∞
∞ 𝑘 𝑝𝛾 𝑘 and 𝑢𝑝 ≝ σ𝑘=−∞

∞ 𝑘 𝑝 𝛾 𝑘

◦ Thus we have 𝐸 𝑉𝑛 − 𝑣𝑛𝜎
2 = 𝑛𝜃 + 𝑜(𝑛)

◦ Now we decompose the AMSE in T2.2 into variance and bias^2,

◦
𝑉𝑛

𝑣𝑛
− 𝜎2

2

2
=

1

𝑣𝑛
2 𝑉𝑛 − 𝐸 𝑉𝑛 2

2 + 𝐸 𝑉𝑛 − 𝑣𝑛𝜎
2 2

◦ =
4𝑝−2 2

𝑐
2
𝑝𝑝4

𝑛
2

𝑝
−4 𝑝4𝑐

3
𝑝

12𝑝−9
𝑛
4−

3

𝑝𝜎4 + 𝑛2𝜃2 + 𝑜 𝑛2 (by 𝑣𝑛 ∼
𝑐
1
𝑝𝑝2

4𝑝−2
𝑛
2−

1

𝑝, T2.2 and the result above)

◦ =
256

81𝑐
4
3

𝑛−
8

3
9𝑐2

16
𝜎4𝑛2 + 𝜃2𝑛2 + 𝑜 𝑛2

◦ =
16

9
𝑐
2

3 +
256

81
𝑐−

4

3𝜅2 𝜎4𝑛−
2

3 where 𝜅 =
𝜃

𝜎2
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Optimal choice of 𝑐 (p.10)

The optimal choice of 𝑐 should minimize 
16

9
𝑐
2

3 +
256

81
𝑐−

4

3𝜅2

◦ Illustration with SymPy

◦ from sympy import symbols, diff, solve, simplify, Rational, init_printing

◦ init_printing() # for printing Latex in console

◦ c, kappa = symbols("c, kappa", real=True, positive=True) # kappa = v1/sigma^2

◦ # Coefficent of Bias^2 and variance

◦ b2 = Rational(256,81) *c**(-Rational(4,3)) *kappa**2

◦ v = Rational(16,9) *c**(Rational(2,3)) # use Rational(p, q) if you want solution in fraction

◦ mse = b2 +v

◦ dMse = diff(mse,c)

◦ minC = solve(dMse, c) # optimal c

◦ # first root minimize after inspection

◦ simplify(minC[0])

◦ simplify(mse.subs(c, minC[0]))
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Estimate optimal 𝑐 (p.10-11)

By prime factorization, we can see that output of SymPy matches with

◦ Optimal AMSE of ො𝜎Δ𝑆𝑅
2 𝑛 =

2
14
3

3
5
3

𝜃
2

3𝜎
8

3𝑛−
2

3 with optimal 𝑐 =
4 2 𝜃

3𝜎2
=

4 2

3
𝜅

◦ Literature shows that optimal AMSE of ො𝜎𝑜𝑏𝑚
2 𝑛 = 2

2

33
1

3𝜃
2

3𝜎
8

3𝑛−
2

3

◦ With batch size 𝑙𝑛 = 𝜆∗𝑛
1

3 and optimal 𝜆∗
3 =

3𝜃2

2𝜎4
⇒ 𝜅 =

2

3
𝜆∗3

◦ Recall that we do not know the optimal functional of block start (same for batch size here)

◦ This shows 𝐴𝑀𝑆𝐸 ො𝜎Δ𝑆𝑅
2 𝑛 = 1.778𝐴𝑀𝑆𝐸[ ො𝜎𝑜𝑏𝑚

2 𝑛 ]. Chan and Yau’s (2017) TSR and PSR dominate it in MSE sense

◦ Theorem 4.1 in Bühlmann and Künsch (1999) gives 
መ𝑙𝑛
3

𝑛
∼

1

𝑛 𝑏3
∼

3𝜃2

2𝜎4
= 𝜆∗

3 ⇒ 𝜆∗ = መ𝑙𝑛𝑛
−
1

3

◦ They gives a procedure to estimate መ𝑙𝑛 via pilot simulation. Hence 𝑛 is the sample size in pilot simulation here

◦ Note that this is asymptotic. Can we have better pilot procedure for small sample?

◦ Using these relationship, we have Ƹ𝑐 =
8

3 3
𝜆∗

3

2 =
8

3 3
መ𝑙𝑛𝑛

−
1

3
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Bühlmann and Künsch’s (1999) 
algorithm (p.10-11)

Let the Tukey-Hanning window 𝑤𝑇𝐻 𝑥 =
1

2
1 + cos 𝜋𝑥 𝕀 𝑥 ≤ 1

◦ Let the splt-cosine window 𝑤𝑆𝐶 𝑥 = ൞

1

2
1 + cos 5 𝑥 − 0.8 𝜋 , 0.8 ≤ 𝑥 ≤ 1

1, 𝑥 < 0.8
0, 𝑥 > 1

◦ 1) Compute ො𝛾 𝑘 =
1

𝑛
σ𝑖=1
𝑛− 𝑘

𝑋𝑖 − ത𝑋𝑛 𝑋𝑖+ 𝑘 − ത𝑋𝑛 for 𝑘 = 1 − 𝑛,… , 𝑛 − 1

◦ 2) Let 𝑏0 =
1

𝑛
. For 𝑚 = 1,2,3,4, compute 𝑏𝑚 = 𝑛−

1

3
σ𝑘=1−𝑛
𝑛−1 ෝ𝛾 𝑘 2

6 σ𝑘=1−𝑛
𝑛−1 𝑤𝑆𝐶 𝑘𝑏𝑚−1𝑛

4
21 𝑘2ෝ𝛾 𝑘 2

1

3

◦ 3) Let መ𝑙𝑛 be the closest integer of 𝑏−1, where 𝑏 = 𝑛−
1

3
2 σ𝑘=1−𝑛

𝑛−1 𝑤𝑇𝐻 𝑘𝑏4𝑛
4
21 ෝ𝛾 𝑘

2

3 σ𝑘=1−𝑛
𝑛−1 𝑤𝑆𝐶 𝑘𝑏4𝑛

4
21 𝑘 ෝ𝛾 𝑘

2

1

3
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Other possible procedures

AR(1) plug-in method

ACVF inspection
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