Reading Group: Recursive Estimation of Time-Average Variance Constants (Wu, 2009)

HEMAN LEUNG SPRING, 2020

Introduction

SECTION 1

Time-average variance constant (p.1)

Let $\{X_i\}_{i\in\mathbb{Z}}$ be a stationary and ergodic process with mean $\mu = E(X_0)$ and finite variance

• Denote covariance function by $\gamma_k = Cov(X_0, X_k) \ \forall k \in \mathbb{Z}$

Sample mean: $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

- Asymptotic normality under suitable conditions: $\sqrt{n}(\bar{X}_n \mu) \xrightarrow{d} N(0, \sigma^2)$
- $\circ \sigma^2$ here is called the time-average variance constant (TAVC) or long-run variance
 - Note that $Var(X_i) = \gamma_0 \neq \sigma^2$ in time series setting

Estimation of σ^2 is important for inference of time series

- Representation under suitable conditions: $\sigma^2 = \sum_{k \in \mathbb{Z}} \gamma_k$
 - Check previous reading group meeting (slide p.20, also check Keith's note) for the conditions

Overlapping batch means (p.2)

Overlapping batch means (OBM): $\hat{\sigma}_{obm}^2(n) = \frac{l_n}{n-l_n+1} \sum_{j=1}^{n-l_n+1} \left(\frac{1}{l_n} \sum_{i=j}^{j+l_n-1} X_i - \bar{X}_n\right)^2$

- First proposed by Meketon and Schmeiser (1984)
- Closely related to lag window estimator using Bartlett kernel (Newey & West, 1987)
 - $\circ~$ An illustration assuming $\mu=0$
 - \circ Same AMSE if bandwidth l_n are both chosen optimally
- Nonoverlapping (NBM) version is also possible, but with worse properties
 - Song (2018) suggested an optimal linear combination of OBM and NBM would be better than solely using OBM
 - I discussed with Keith and we thought that her evidence was not solid enough (e.g. no theoretical properties shown)

Recursive estimation

Recursive formula for sample mean: $\overline{X}_n = \frac{n-1}{n}\overline{X}_{n-1} + \frac{1}{n}X_n$

Recursive formula for sample variance: $S_n^2 = \frac{n-2}{n-1}S_{n-1}^2 + \frac{1}{n}(X_n - \overline{X}_{n-1})^2$

• This is Welford's (1962) online algorithm

Recursive formula for TAVC: did not exist

- Note that $\hat{\sigma}_{obm}^2(n)$ has both O(n) computational and memory complexity
 - When $l_n \neq l_{n-1}$, all batch means need to be updated
- However it is important for
 - Convergence diagnostics of MCMC
 - Sequential monitoring and testing

 $\mathcal{L}^{p} \text{ norm: } \|X\|_{p} \stackrel{\text{def}}{=} (E|X|^{p})^{\frac{1}{p}}, X \in \mathcal{L}^{p} \text{ if } \|X\|_{p} < \infty$ $\circ \text{ Write } \|X\| = \|X\|_{2}$

Same order:
$$a_n \sim b_n$$
 if $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$
 $\circ a_n \approx b_n$ if $\exists c > 0$ such that $\frac{1}{c} \leq \left| \frac{a_n}{b_n} \right| \leq c$ for all large n
Let $S_n = \sum_{i=1}^n X_i - n\mu$ and $S_n^* = \max_{i \leq n} |S_i|$

Recursive TAVC estimates

SECTION 2

Algorithm when $\mu = 0$

Start of each block: $\{a_k\}_{k \in \mathbb{N}}$ is a strictly increasing integer sequence such that

•
$$a_1 = 1$$
 and $a_{k+1} - a_k \to \infty$ as $k \to \infty$

• Start of each batch:
$$t_i = a_k$$
 if $a_k \le i < a_{k+1}$

Component: $V_n = \sum_{i=1}^n W_i^2$ where $W_i = X_{t_i} + X_{t_i+1} + \dots + X_i$

•
$$v_n = \sum_{i=1}^n l_i$$
 where $l_i = i - t_i + 1$

• Observe that W_i is the batch sum and l_i is the batch size

Algorithm: at stage *n*, we store $(n, k_n, a_{k_n}, v_n, V_n, W_n)$. At stage n + 1,

• If $n + 1 = a_{k_n+1}$, set $k_{n+1} = k_n + 1$ and $W_{n+1} = X_{n+1}$. Otherwise set $k_{n+1} = k_n$ and $W_{n+1} = W_n + X_{n+1}$

• Set
$$V_{n+1} = V_n + W_{n+1}^2$$
 and $v_{n+1} = v_n + (n+2-a_{k_{n+1}})$ since $t_{n+1} = a_{k_{n+1}}$

• The estimate is $\hat{\sigma}_{\Delta SR}^2(n+1) = \frac{V_{n+1}}{v_{n+1}}$

Graphical illustration (Chan and Yau, 2017)

Start of each block = a_k ; thus a block B_k contains { $a_k, a_k + 1, ..., a_{k+1} - 1$ }

Choice of a_k and t_n (p.3-4)

A simple choice is $a_k = \lfloor ck^p \rfloor$ where c > 0 and p > 1 are constants

- Optimal choice of functional is not known
 - I discussed with Keith and we need to resort to variational calculus for this problem
 - However it seems to be unsolvable without proper boundary conditions (tried on SymPy)

Note that t_n is implicitly determined by choice of a_k

- Since $a_k \leq n < a_{k+1}$, choosing $a_k = \lfloor ck^p \rfloor$ means $ck^p 1 < n < c(k+1)^p 1$
- Solving $k = k_n$ from the above inequalities, we have

•
$$t_n = a_{k_n}$$
 where $k_n = \left[\left(\frac{n+1}{c}\right)^{\frac{1}{p}}\right] - 1$

Modification when $\mu \neq 0$ (p.4-5)

General component: $V'_n = \sum_{i=1}^n (W'_i)^2$ where $W'_i = X_{t_i} + X_{t_i+1} + \dots + X_i - l_i \overline{X}_n$

- Observe that $(W'_i)^2 = W_i^2 2l_iW_i\overline{X}_n + (l_i\overline{X}_n)^2$
- Let $U_n = \sum_{i=1}^n l_i W_i$ and $q_n = \sum_{i=1}^n l_i^2$
 - Note that they can also be updated recursively

• Then
$$V'_n = V_n - 2U_n \overline{X}_n + q_n (\overline{X}_n)^2$$
 and $\hat{\sigma}^2_{\Delta SR}(n) = \frac{V'_n}{v_n}$

• Complete algorithm is similar to previous logic so we skip it here

Generalization to spectral density estimation is possible

• Relation between spectral density and TAVC was discussed in previous reading group (slide p.47)

Convergence properties

SECTION 3

Representation of TAVC (p.5-6)

Consider Wu's (2005) nonlinear Wold process

• Weak stability with p = 2 (i.e. $\Omega_2 < \infty$) guarantees invariance principle, which entails CLT

Representation of TAVC

- Assume $E(X_i) = 0$ and $\sum_{i=0}^{\infty} ||\mathcal{P}_0 X_i||_2 < \infty$ where $\mathcal{P}_i := E(\cdot |\mathcal{F}_i) E(\cdot |\mathcal{F}_{i-1})$
 - $\,\circ\,\,$ The later assumption is equivalent to $\Omega_2<\infty$ (which suggest short-range dependence)
- Then $D_k \stackrel{\text{def}}{=} \sum_{i=k}^{\infty} \mathcal{P}_k X_i \in \mathcal{L}^2$ and is a stationary martingale difference sequence w.r.t. \mathcal{F}_k
 - Proved in previous reading group (slide p.21)
- By theorem 1 in Hannan (1979), we have invariance principle and $\sigma = \|D_k\|_2$
 - Why not $||D_0||_2$? Because they have same distribution by stationarity and we cannot observe X_0 in practice
- Let $S_n = \sum_{i=1}^n X_i$ and $M_n = \sum_{i=1}^n D_i$
- If $\Omega_{\alpha} < \infty$ for $\alpha > 2$, then $\|S_n M_n\|_{\alpha} = o(\sqrt{n})$

• This partly comes from moment inequality. See previous reading group (slide p.20)

SECTION 3.1

Moment convergence

Moment convergence (p.6-7)

Theorem 1: let $E(X_i) = 0$ and $X_i \in \mathcal{L}^{\alpha}$ where $\alpha > 2$

- Assume $\sum_{i=0}^{\infty} \|\mathcal{P}_0 X_i\|_{\alpha} < \infty$
 - Equivalent to $\Omega_{\alpha} < \infty$, which is mild as σ^2 does not always exist for long-range dependent processes
- Further assume as $m \to \infty$, $a_{m+1} a_m \to \infty$ and $\frac{(a_{m+1} a_m)^2}{\sum_{k=2}^m (a_k a_{k-1})^2} \to 0$
 - $\,\circ\,\,$ Earlier condition $a_{m+1}-a_m\to\infty$ is needed to account for dependence
 - $\,\circ\,\,$ Later condition is needed so that a_m does not diverge to ∞ so fast
- Then $\left\|\frac{v_n}{v_n} \sigma^2\right\|_{\frac{\alpha}{2}} = o(1)$
 - This implies finite forth moment is not necessary for consistency of $\hat{\sigma}_{\Delta SR}^2(n)$ (e.g. take $\alpha = 3$)
 - Convergence in $\mathcal{L}^{\frac{\alpha}{2}}$ norm where $\alpha > 2$ implies convergence in probability (i.e. consistency)

Corollary 1: under same assumptions of theorem 1, we also have
$$\left\|\frac{V'_n}{v_n} - \sigma^2\right\|_{\frac{\alpha}{2}} = o(1)$$

Proof of theorem 1: blocking (p.13)

Blocking: for $n \in \mathbb{N}$ choose $m = m_n \in \mathbb{N}$ such that $a_m \leq n < a_{m+1}$

• *m* represent total number of complete blocks

• Then
$$v_n = \sum_{j=1}^n (j - t_j + 1) = \sum_{i=2}^m \sum_{j=a_{i-1}}^{a_i - 1} (j - t_j + 1) + \sum_{j=a_m}^n (j - t_j + 1)$$

• $= \frac{1}{2} \sum_{i=2}^m (a_i - a_{i-1})(a_i - a_{i-1} + 1) + \frac{1}{2}(n - a_m)(n - a_m + 1)$

$$\sim -\frac{1}{2}\sum_{i=2}^{m}(a_i-a_{i-1})^2$$
 by assumption of theorem 1

Note that
$$1 \leq \liminf_{m \to \infty} \frac{v_n}{v_{a_m}} \leq \limsup_{m \to \infty} \frac{v_{a_{m+1}}}{v_{a_m}} \text{ since } v_{a_{m+1}} \geq v_n \ (?)$$

 $\circ \text{ By assuming } \frac{(a_{m+1}-a_m)^2}{\sum_{k=2}^m (a_k-a_{k-1})^2} \to 0, \limsup_{m \to \infty} \frac{v_{a_{m+1}}}{v_{a_m}} = 1$

Hence both limits are 1

Proof of theorem 1: martingale approximation (p.13)

For any fixed $k_0 \in \mathbb{N}$, since $a_{m+1} - a_m$ is increasing to ∞ , we have

- $\lim_{m \to \infty} \frac{1}{v_n} \sum_{i=1}^n \mathbb{I}(i t_i + 1 \le k_0) \le \lim_{m \to \infty} \frac{1}{v_n} m k_0 = 0$
 - Using $(m+1)k_0$ is better (?)

Martingale approximation: $\sum_{i=0}^{\infty} ||\mathcal{P}_0 X_i||_{\alpha} < \infty$ implies $D_k = \sum_{i=k}^{\infty} \mathcal{P}_k X_i \in \mathcal{L}^{\alpha}$ • Let $M_n = \sum_{i=1}^n D_i$. By theorem 1 in Wu (2007), the above condition also implies • $||S_n||_{\alpha} = O(\sqrt{n}), ||M_n||_{\alpha} = O(\sqrt{n})$ and $||S_n - M_n||_{\alpha} = O(\sqrt{n})$ • Hence as $n \to \infty$, $\rho_n \stackrel{\text{def}}{=} \frac{1}{n} ||S_n^2 - M_n^2||_{\frac{\alpha}{2}} \le \frac{1}{n} ||S_n - M_n||_{\alpha} ||S_n + M_n||_{\alpha} \to 0$ • Inequality by Cauchy-Schwarz: $||(S_n - M_n)(S_n + M_n)||_{\frac{\alpha}{2}} \le ||S_n - M_n||_{\alpha} ||S_n + M_n||_{\alpha}$ • Aim to approximate V_n by $Q_n = \sum_{i=1}^n R_i^2$ where $R_i = D_{t_i} + D_{t_i+1} + \dots + D_i$

• Such that
$$||Q_n - V_n||_{\frac{\alpha}{2}} = o(v_n)$$
 and show that $\left\|\frac{Q_n}{v_n} - \sigma^2\right\|_{\frac{\alpha}{2}} = o(1)$

Proof of theorem 1:
$$||Q_n - V_n||_{\frac{\alpha}{2}} = o(v_n)$$
 (p.13)

$$\begin{split} \limsup_{n \to \infty} \frac{1}{v_n} \| V_n - Q_n \|_{\frac{\alpha}{2}} &\leq \limsup_{n \to \infty} \frac{1}{v_n} \sum_{i=1}^n \| R_i^2 - W_i^2 \|_{\frac{\alpha}{2}} \text{ (by Minkowski inequality)} \\ &\circ &\leq \limsup_{n \to \infty} \frac{1}{v_n} \sum_{i=1}^n (i - t_i + 1) \rho_{i-t_i+1} \text{ (by definition of } \rho_n \text{ and stationarity)} \\ &\circ &\leq \limsup_{n \to \infty} \frac{1}{v_n} \sum_{1 \leq i \leq n: i-t_i+1 > k_0} (i - t_i + 1) \rho_{i-t_i+1} \text{ (by } \lim_{m \to \infty} \frac{1}{v_n} \sum_{i=1}^n \mathbb{I}(i - t_i + 1 \leq k_0) = 0) \\ &\circ &\leq \sup_{k \geq k_0} \rho_k \text{ (by } \sum_{i=1}^n (i - t_i + 1) \rho_{i-t_i+1} \leq \sup_{k \geq k_0} \rho_k \sum_{i=1}^n (i - t_i + 1)) \\ &\circ &\to 0 \text{ (by } \rho_n \to 0 \text{ as } n \to \infty) \end{split}$$

Proof of theorem 1:
$$\left\|\frac{Q_n}{v_n} - \sigma^2\right\|_{\frac{\alpha}{2}} = o(1)$$
 (p.14)

Recall that $t_i = a_k$ if $a_k \le i \le a_{k+1} - 1$

- Block square of sum: $Y_k = \sum_{i=a_k}^{a_{k+1}-1} (D_{t_i} + D_{t_i+1} + \dots + D_i)^2 = \sum_{i=a_k}^{a_{k+1}-1} (D_{a_k} + D_{a_{k+1}} + \dots + D_i)^2$
- Block sum of square: $\tilde{Y}_k = \sum_{i=a_k}^{a_{k+1}-1} (D_{a_k}^2 + D_{a_k+1}^2 + \dots + D_i^2)$
- $\circ \|Y_k\|_{\frac{\alpha}{2}} \leq \sum_{i=a_k}^{a_{k+1}-1} \left\| \left(D_{a_k} + D_{a_k+1} + \dots + D_i \right)^2 \right\|_{\frac{\alpha}{2}}$ (by Minkowski inequality)

$$\circ = \sum_{i=a_k}^{a_{k+1}-1} \left\| D_{a_k} + D_{a_k+1} + \dots + D_i \right\|_{\alpha}^2$$

 $\circ \leq \sum_{i=a_k}^{a_{k+1}-1} c_{\alpha}(i-a_k+1) \|D_1\|_{\alpha}^2$ where c_{α} is a constant which only depends on α

• By Burkholder's inequality and \mathcal{L}^{α} stationarity. See previous reading group (slide p. 21-22)

• On the other hand, $\|\tilde{Y}_k\|_{\frac{\alpha}{2}} \leq \sum_{i=a_k}^{a_{k+1}-1} (i-a_k+1) \|D_1\|_{\alpha}^2$ (by Minkowski inequality and \mathcal{L}^{α} stationarity)

Proof of theorem 1: $\left\| \frac{Q_n}{v_n} - \sigma^2 \right\|_{\frac{\alpha}{2}} = o(1)$ (p.14-15)

Since $1 < \frac{\alpha}{2} \le 2$ and $Y_k - E(Y_k | \mathcal{F}_{a_k})$ is a MDS, we have

 \circ It seems this impose $\alpha \leq 4$ on theorem 1

$$\begin{split} & \left\|\sum_{k=1}^{m} \left[Y_{k} - E\left(Y_{k} \middle| \mathcal{F}_{a_{k}}\right)\right]\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} \leq c_{\alpha} \sum_{k=1}^{m} \left\|Y_{k} - E\left(Y_{k} \middle| \mathcal{F}_{a_{k}}\right)\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} \text{ (by Burkholder's inequality)} \\ & \circ \leq c_{\alpha} \sum_{k=1}^{m} \left\|Y_{k}\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} \text{ (by Jensen's inequality, } c_{\alpha} \text{ actually changes)} \\ & \circ \text{ Similarly, } \left\|\sum_{k=1}^{m} \left[\tilde{Y}_{k} - E\left(\tilde{Y}_{k} \middle| \mathcal{F}_{a_{k}}\right)\right]\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} \leq c_{\alpha} \sum_{k=1}^{m} \left\|\tilde{Y}_{k}\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} \end{split}$$

Note that D_i are also MDS and $E(\tilde{Y}_k | \mathcal{F}_{a_k}) = E(Y_k | \mathcal{F}_{a_k})$

- Difference between \tilde{Y}_k and Y_k lies in the cross terms, e.g. $D_{a_k}D_{a_k+1}$
- However by property of MDS, $E(D_{a_k}D_{a_{k+1}}) = 0$

Proof of theorem 1:
$$\left\|\frac{Q_n}{v_n} - \sigma^2\right\|_{\frac{\alpha}{2}} = o(1)$$
 (p.15)

Note that
$$\left\|\sum_{k=1}^{m} \left(Y_k - \tilde{Y}_k\right)\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} = \left\|\sum_{k=1}^{m} \left[Y_k - \tilde{Y}_k - E\left(Y_k | \mathcal{F}_{a_k}\right) + E\left(Y_k | \mathcal{F}_{a_k}\right)\right]\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$$

 $^\circ$ $\,$ We do not work on cross-term directly with Minkowski directly as the bound is looser $\,$

$$\leq c_{\alpha} \sum_{k=1}^{m} \left(\|Y_{k}\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} + \|\tilde{Y}_{k}\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} \right)$$
(by Minkowski and inequalities proved in last slide)

$$\leq c_{\alpha} \|D_{1}\|_{\alpha}^{\alpha} \sum_{k=1}^{m} \left[\sum_{i=a_{k}}^{a_{k+1}-1} (i-a_{k}+1) \right]^{\frac{\alpha}{2}}$$
(by inequalities proved in two slides ago)

$$\leq c_{\alpha} \|D_{1}\|_{\alpha}^{\alpha} \max_{h \leq m} \left[\sum_{i=a_{h}}^{a_{h+1}-1} (i-a_{h}+1) \right]^{\frac{\alpha}{2}-1} \sum_{k=1}^{m} \left[\sum_{i=a_{k}}^{a_{k+1}-1} (i-a_{k}+1) \right]$$

$$\quad \text{Recall that } v_{a_{m}} = \sum_{k=1}^{m} \left[\sum_{i=a_{k}}^{a_{k+1}-1} (i-a_{k}+1) \right]$$
 by blocking

Proof of theorem 1:
$$\left\|\frac{Q_n}{v_n} - \sigma^2\right\|_{\frac{\alpha}{2}} = o(1)$$
 (p.15)

$$\begin{aligned} & \text{Now } v_n^{-\frac{\alpha}{2}} \Big\| \sum_{k=1}^m (Y_k - \tilde{Y}_k) \Big\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} \le v_n^{-\frac{\alpha}{2}+1} c_\alpha \| D_1 \|_{\alpha}^{\alpha} \max_{h \le m} \Big[\sum_{i=a_h}^{a_{h+1}-1} (i - a_h + 1) \Big]^{\frac{\alpha}{2}-1} \\ & \circ \text{ By } 1 \le \liminf_{m \to \infty} \frac{v_n}{v_{a_m}} \le \limsup_{m \to \infty} \frac{v_{a_{m+1}}}{v_{a_m}} = 1 \\ & \circ \le c_\alpha \| D_1 \|_{\alpha}^{\alpha} \left[\frac{\max_{h \le m} (a_{h+1} - a_h)^2}{v_n} \right]^{\frac{\alpha}{2}-1} \to 0 \text{ (by } \frac{(a_{m+1} - a_m)^2}{\sum_{k=2}^m (a_k - a_{k-1})^2} \to 0) \end{aligned}$$

Ergodic theorem: since $D_k^2 \in \mathcal{L}^{\frac{\alpha}{2}}$, we have $\|D_1^2 + \dots + D_l^2 - l\sigma^2\|_{\frac{\alpha}{2}} = o(l)$

• Therefore
$$\|\tilde{Y}_k - E(\tilde{Y}_k)\|_{\frac{\alpha}{2}} = o[(a_{k+1} - a_k)^2]$$

• Recall that $\tilde{Y}_k = \sum_{i=a_k}^{a_{k+1}-1} (D_{a_k}^2 + D_{a_k+1}^2 + \dots + D_i^2)$. The sum is a isosceles triangular shaped

• Then
$$\lim_{n \to \infty} \frac{1}{v_n} \left\| \sum_{k=1}^m [\tilde{Y}_k - E(\tilde{Y}_k)] \right\|_{\frac{\alpha}{2}} = \lim_{n \to \infty} \frac{1}{v_n} \sum_{k=1}^m o[(a_{k+1} - a_k)^2] = 0$$

• By Minkowski inequality and property of little o

Proof of theorem 1:
$$\left\|\frac{Q_n}{v_n} - \sigma^2\right\|_{\frac{\alpha}{2}} = o(1)$$
 (p.15)

Since
$$\frac{1}{v_n} \left\| \sum_{k=1}^m (Y_k - \tilde{Y}_k) \right\|_{\frac{\alpha}{2}} \to 0 \Leftrightarrow \left\| \sum_{k=1}^m (Y_k - \tilde{Y}_k) \right\|_{\frac{\alpha}{2}} = o(v_n)$$
 (first part in last slide)
 \circ And $\lim_{n \to \infty} \frac{1}{v_n} \left\| \sum_{k=1}^m [\tilde{Y}_k - E(\tilde{Y}_k)] \right\|_{\frac{\alpha}{2}} = 0 \Leftrightarrow \left\| \sum_{k=1}^m [\tilde{Y}_k - E(\tilde{Y}_k)] \right\|_{\frac{\alpha}{2}} = o(v_n)$ (second part in last slide)
 \circ We have $\left\| \sum_{k=1}^m [Y_k - E(\tilde{Y}_k)] \right\|_{\frac{\alpha}{2}} = \left\| \sum_{k=1}^m [Y_k - E(Y_k)] \right\|_{\frac{\alpha}{2}}$ (by $E(\tilde{Y}_k | \mathcal{F}_{a_k}) = E(Y_k | \mathcal{F}_{a_k})$)
 $\circ = \left\| \sum_{k=1}^m Y_k - v_{a_m} \sigma^2 \right\|_{\frac{\alpha}{2}} = o(v_{a_m})$ (by ergodic theorem)

Finally we compare
$$Q_n$$
 and $Q_{a_{m+1}-1} = \sum_{k=1}^m Y_k$
 $\circ \|Q_n - Q_{a_{m+1}-1}\|_{\frac{\alpha}{2}} = \|\sum_{i=n+1}^{a_{m+1}-1} R_i^2\|_{\frac{\alpha}{2}}$ (recall $R_i = D_{t_i} + D_{t_i+1} + \dots + D_i$)
 $\circ \leq \sum_{i=n+1}^{a_{m+1}-1} \|R_i\|_{\alpha}^2$ (by Minkowski inequality)
 $\circ = \sum_{i=n+1}^{a_{m+1}-1} O(i - t_i + 1) \leq (a_{m+1} - a_m)^2 = O(v_n)$ (by $\frac{(a_{m+1} - a_m)^2}{\sum_{k=2}^m (a_k - a_{k-1})^2} \to 0$

Proof of corollary 1: requirement (p.15)

Note that V'_n remains unchanged if X_i is replaced by $X_i - \mu$

- $\,\circ\,$ Hence we can assume $\mu=0$ wlog
- By $V'_n = V_n 2U_n \bar{X}_n + q_n (\bar{X}_n)^2$ and theorem 1, it suffices to verify
- $\|U_n \overline{X}_n\|_{\frac{\alpha}{2}} = o(v_n)$ and
- $\circ \|q_n(\bar{X}_n)^2\|_{\frac{\alpha}{2}} = o(v_n)$

By moment inequality, $||S_n||_{\alpha} = O(\sqrt{n}) \Rightarrow ||\overline{X}_n||_{\alpha} = O(n^{-\frac{1}{2}})$

Proof of corollary 1:
$$||q_n(\overline{X}_n)^2||_{\frac{\alpha}{2}} = o(v_n)$$
 (p.16)

Choose $m \in \mathbb{N}$ such that $a_m \leq n < a_{m+1}$, we have

•
$$(a_{m+1} - a_m)^2 = o(1) \sum_{k=2}^m (a_k - a_{k-1})^2 (by \frac{(a_{m+1} - a_m)^2}{\sum_{k=2}^m (a_k - a_{k-1})^2} \to 0)$$

• $\leq o(1) [\sum_{k=2}^{m} (a_k - a_{k-1})]^2 = o(a_m^2)$ (by a_k is positive and telescoping sum)

Since $a_m \to \infty$ and is increasing, $\max_{l \le m} (a_{l+1} - a_l) = o(a_m) = o(n)$ (by result of the above) \circ Recall that $q_n = \sum_{i=1}^n l_i^2$ and $v_n = \sum_{i=1}^n l_i$, we have $\circ q_n \le v_n \max_{l \le m} (a_{l+1} - a_l)$ (by blocking) $\circ = v_n o(n)$

Hence $||q_n(\overline{X}_n)^2||_{\frac{\alpha}{2}} = v_n o(n)O(n^{-1}) = o(v_n)$ $\circ o(a_n)O(b_n) = o(a_nb_n)$ (little o times big O is little o)

Proof of corollary 1:
$$||U_n \overline{X}_n||_{\frac{\alpha}{2}} = o(v_n)$$
 (p.16)

If $||U_n||_{\alpha} = O(1)\sqrt{\sum_{l=1}^m (a_{l+1} - a_l)^5}$, then we have $||U_n \bar{X}_n||_{\frac{\alpha}{2}} \le ||U_n||_{\alpha} ||\bar{X}_n||_{\alpha}$ (by Cauchy–Schwarz inequality) $= O(n^{-\frac{1}{2}})\sqrt{\sum_{l=1}^m (a_{l+1} - a_l)^5}$ (by moment inequality) $\le O(n^{-\frac{1}{2}})[\sum_{l=1}^m (a_{l+1} - a_l)^2]\sqrt{\max_{l\le m}(a_{l+1} - a_l)}$ (by $\sum_{l=1}^m (a_{l+1} - a_l)^4 \le [\sum_{l=1}^m (a_{l+1} - a_l)^2]^2$) $= O(n^{-\frac{1}{2}})O(n^{\frac{1}{2}})[\sum_{l=1}^m (a_{l+1} - a_l)^2]$ (by $\max_{l\le m}(a_{l+1} - a_l) = O(n)$) $= O(n^{-\frac{1}{2}})O(n^{\frac{1}{2}})O(n)$ (by blocking) = O(n) (little o times big O is little o)

Now we only need to prove $||U_n||_{\alpha} = O(1)\sqrt{\sum_{l=1}^m (a_{l+1} - a_l)^5}$

Proof of corollary 1:
$$||U_n \overline{X}_n||_{\frac{\alpha}{2}} = o(v_n)$$
 (p.16)

Recall
$$l_i = i - t_i + 1$$
 and $U_n = \sum_{i=1}^n l_i W_i$ where $W_i = X_{t_i} + X_{t_i+1} + \dots + X_i$
• Let $h_j = h_{j,n} = \sum_{i=1}^n l_i \mathbb{I}(t_i \le j \le i)$, $j = 1, ..., n$
• Then $U_n = \sum_{i=1}^n l_i \sum_{j=t_i}^i X_j = \sum_{j=1}^n X_j h_j$
• Since $X_j = \sum_{k=0}^{\infty} \mathcal{P}_{j-k} X_j$ and $\mathcal{P}_{j-k} X_j$ is MDS, we have
• $\|U_n\|_{\alpha} \le \sum_{k=0}^{\infty} \|\sum_{j=1}^n \mathcal{P}_{j-k} X_j h_j\|_{\alpha}$ (by Minkowski inequality)
• $\le \sum_{k=0}^{\infty} c_{\alpha} \sqrt{\sum_{j=1}^n \|\mathcal{P}_{j-k} X_j h_j\|_{\alpha}^2}$ (by Burkholder's inequality, not trivial?)
• $= c_{\alpha} \sqrt{\sum_{j=1}^n h_j^2} \sum_{k=0}^{\infty} \|\mathcal{P}_0 X_k\|_{\alpha}$ (by \mathcal{L}^{α} stationarity)
• By blocking, $\sum_{j=1}^n h_j^2 \le \sum_{k=1}^m \sum_{j=a_k}^{a_{k+1}-1} h_j^2 \le \sum_{k=1}^m \sum_{j=a_k}^{a_{k+1}-1} (a_{k+1} - a_k)^4 = \sum_{k=1}^m (a_{k+1} - a_k)^5$

• Hence $||U_n||_{\alpha} = O(1)\sqrt{\sum_{k=1}^m (a_{k+1} - a_k)^5}$ (by $\sum_{i=0}^\infty ||\mathcal{P}_0 X_i||_{\alpha} < \infty$)

Proof of moment convergence: summary of techniques

Begin with martingale approximation

- Cater for dependence in time series
 - Projection decomposition available as MDS $(X_j = \sum_{k=0}^{\infty} \mathcal{P}_{j-k} X_j)$
- Enable the use of ergodic theorem for moment convergence
 - WLLN under dependence. Check theorem 7.12 and 7.21 in Keith's STAT4010
- Handle approximation difference with norm and little o (e.g. Y_k and \tilde{Y}_k)
 - MDS is uncorrelated

Handle remainder term (e.g. V_n vs V_{a_m})

- \circ By blocking and assumption on growth rate of start of block a_m
 - Suitable for subsampling or even general time series (e.g. m-dependent)
 - Allow sharper bound to be derived. See proof related to $\|\sum_{k=1}^{m} (Y_k \tilde{Y}_k)\|_{\frac{\alpha}{2}}$. Also check lemma 1 in Liu and Wu (2010)
 - Bounding a weighted sum, which may be useful for say SLLN. See proof related to U_n . Also check Kronecker's lemma

Convergence rate, $2 < \alpha \leq 4$

SECTION 3.2.1

Convergence rate (p.8)

Theorem 2: let $a_k = \lfloor ck^p \rfloor$, $k \ge 1$ where c > 0 and p > 1 are constants

Theorem 2.1: assume that $X_i \in \mathcal{L}^{\alpha}$, $E(X_i) = 0$ and $\Delta_{\alpha} = \sum_{j=0}^{\infty} \delta_{\alpha}(j) < \infty$ for some $\alpha \in (2,4]$ \circ Then $\|V_n - E(V_n)\|_{\frac{\alpha}{2}} = O\left(n^{\frac{3}{2} - \frac{3}{2p} + \frac{2}{\alpha}}\right)$

Theorem 2.2: assume that $X_i \in \mathcal{L}^{\alpha}$, $E(X_i) = 0$ and $\Delta_{\alpha} = \sum_{j=0}^{\infty} \delta_{\alpha}(j) < \infty$ for some $\alpha > 4$ \circ Then $\lim_{n \to \infty} \frac{\|V_n - E(V_n)\|}{n^{2-\frac{3}{2p}}} = \frac{\sigma^2 p^2 c^{\frac{3}{2p}}}{\sqrt{12p-9}}$

Theorem 2.3: if $X_i \in \mathcal{L}^2$, $E(X_i) = 0$ and $\sum_{j=0}^{\infty} j^q \omega(j) < \infty$ for some $q \in (0,1]$ \circ Then $E(V_n - v_n \sigma^2) = O[n^{1+(1-q)\left(1-\frac{1}{p}\right)}]$

• Consequently, if theorem 2.1 also holds, then $||V_n - v_n \sigma^2||_{\frac{\alpha}{2}} = O(n^{\phi})$

•
$$\phi = \max\left[\frac{3}{2} - \frac{3}{2p} + \frac{2}{\alpha}, 1 + (1 - q)\left(1 - \frac{1}{p}\right)\right]$$

•
$$\sum_{j=1}^{\infty} j^q \delta_{\alpha}(j) < \infty$$
 is sufficient

Optimal convergence rate (p.8)

To achieve optimal convergence, we should minimize $\phi = \max\left[\frac{3}{2} - \frac{3}{2p} + \frac{2}{\alpha}, 1 + (1-q)\left(1 - \frac{1}{p}\right)\right]$

- \circ Theorem 2 guides us to choose p based on q (dependence condition) and α (moment condition)
- A good p should minimize $n^{\frac{3}{2}-\frac{3}{2p}+\frac{2}{\alpha}} + n^{1+(1-q)\left(1-\frac{1}{p}\right)}$, which also minimize ϕ

• Set
$$\frac{3}{2} - \frac{3}{2p} + \frac{2}{\alpha} = 1 + (1 - q)\left(1 - \frac{1}{p}\right)$$
 and solve for p

• The rationale is that the optimal rate should be the same regardless of conditions which are hard to verify?

• We have
$$p = \frac{\frac{1}{2}+q}{q-\frac{1}{2}+\frac{2}{\alpha}}$$
 (denominator should be $q - \frac{1}{2} + \frac{2}{\alpha}$, probably typo in the paper)

Corollary 2: Let
$$p = \frac{\frac{1}{2} + q}{q - \frac{1}{2} + \frac{2}{\alpha}}$$
. Under conditions of theorem 2, $\left\|\frac{V_n}{v_n} - \sigma^2\right\|_{\frac{\alpha}{2}} = O\left(n^{\frac{2}{\alpha} - \frac{1}{2} - \frac{1}{2p}}\right)$
 \circ In particular, if $\alpha = 4$ and $q = 1$, then $p = \frac{3}{2}$ and $\left\|\frac{V_n}{v_n} - \sigma^2\right\|_2 = O\left(n^{-\frac{1}{3}}\right)$

Convergence rate when $\mu \neq 0$ (p.9)

Note that
$$v_n \sim v_{a_m} \sim \frac{1}{2} \sum_{i=2}^m (a_i - a_{i-1})^2$$
 (by blocking)
 $\sim \frac{1}{2} \sum_{i=2}^m c^2 p^2 i^{2p-2}$ (by considering the differential $a_i - a_{i-1} \sim cpi^{p-1}$)
 $\sim \frac{c^2 p^2 m^{2p-1}}{4p-2}$ (by approximating sum $\sum_{x=2}^m$ with integral $\int_2^m dx$)
 $\sim \frac{c^{\frac{1}{p}} p^2}{4p-2} n^{2-\frac{1}{p}} = O\left(n^{2-\frac{1}{p}}\right)$ (by $n \sim cm^p \Rightarrow m \sim \left(\frac{n}{c}\right)^{\frac{1}{p}}$)
Corollary 2 also applies to $\frac{V'_n}{v_n}$ since $\frac{1}{v_n} ||V_n - V'_n||_{\frac{\alpha}{2}} = O\left(n^{-\frac{1}{p}}\right)$ and $-\frac{1}{p} < \frac{2}{\alpha} - \frac{1}{2} - \frac{1}{2p}$
 \sim This implies the difference $V_n - V'_n$ cannot be the dominating term
 \sim See remark 4 in paper for proof of $\frac{1}{v_n} ||V_n - V'_n||_{\frac{\alpha}{2}}$

Proof of theorem 2.1:
$$\|V_n - E(V_n)\|_{\frac{\alpha}{2}} = O\left(n^{\frac{3}{2} - \frac{3}{2p} + \frac{2}{\alpha}}\right) \text{ (p.17-18)}$$

Recall
$$V_n = \sum_{i=1}^n W_i^2$$
. Note that $||V_n - E(V_n)||_{\frac{\alpha}{2}} \le ||\sum_{i=1}^n W_i^2||_{\frac{\alpha}{2}} (V_n \text{ is non-negative})$
 $\circ = ||\sum_{i=1}^n \sum_{k=0}^\infty \mathcal{P}_{i-k} W_i^2||_{\frac{\alpha}{2}} (\text{by } W_i^2 = \sum_{k=0}^\infty \mathcal{P}_{i-k} W_i^2)$
 $\circ \le \sum_{k=0}^\infty ||\sum_{i=1}^n \mathcal{P}_{i-k} W_i^2||_{\frac{\alpha}{2}} (\text{by Minkowski inequality})$
 $\circ \text{ It suffices to find the order of } ||\sum_{i=1}^n \mathcal{P}_{i-k} W_i^2||_{\frac{\alpha}{2}}$

Blocking: let $b_m = \lfloor (1+c)p2^p m^{p-1} \rfloor$

- $\,\circ\,$ It can be shown that $i-t_i\leq a_{m+1}-1-a_m\leq b_m\;\forall m\in\mathbb{N}$
 - $\,\circ\,\,$ Obviously the functional of b_m is chosen by solving this inequality
 - \circ This also means that b_m is the bound of block size and batch size

$$\sum_{k=0}^{\infty} \|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\|_{\frac{\alpha}{2}} = \sum_{k=2b_{m}}^{\infty} \|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\|_{\frac{\alpha}{2}} + \sum_{k=0}^{2b_{m}-1} \|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\|_{\frac{\alpha}{2}}$$

Proof of theorem 2.1:
bound of
$$\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$$
 (p.17)

Recall that $W_i = X_{t_i} + X_{t_i+1} + \dots + X_i$. Let $W_i^* = X'_{t_i} + X'_{t_i+1} + \dots + X'_i$ (coupled batch sum)

- Since $\epsilon'_0 \perp \epsilon_i$, $i \in \mathbb{Z}$, we have $E(X_i | \mathcal{F}_{-1}) = E(X'_i | \mathcal{F}_{-1}) = E(X'_i | \mathcal{F}_0)$
- $\,\circ\,$ Stability assumption $\Delta_{\alpha} < \infty$ implies weak stability $\Theta_{\alpha} < \infty$
- By theorem 1 in Wu (2007), $||W_i||_{\alpha} \le c_{\alpha}\Theta_{\alpha}\sqrt{i-t_i+1}$ (moment inequality)
- Now $\|\mathcal{P}_0 W_i^2\|_{\frac{\alpha}{2}} = \|E(W_i^2|\mathcal{F}_0) E(W_i^2|\mathcal{F}_{-1})\|_{\frac{\alpha}{2}}$ (definition of projection)

$$\circ = \left\| E(W_i^2 | \mathcal{F}_0) - E[(W_i^*)^2 | \mathcal{F}_0] \right\|_{\frac{\alpha}{2}} \text{ (property of coupled batch sum)}$$

- ∘ ≤ $||W_i^2 (W_i^*)^2||_{\frac{\alpha}{2}}$ (by Jensen's inequality and tower property)
- $|W_i + W_i^*||_{\alpha} ||W_i W_i^*||_{\alpha}$ (by Cauchy–Schwarz inequality)
- $\circ \leq 2 \|W_i\|_{\alpha} \sum_{j=t_i}^i \delta_{\alpha}(j)$ (property of coupled batch sum and definition of physical dependence)
- $\circ \leq 2c_{\alpha}\Theta_{\alpha}\sqrt{i-t_{i}+1}\sum_{j=t_{i}}^{i}\delta_{\alpha}(j)$ (by moment inequality)

Proof of theorem 2.1:
bound of
$$\left\|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$$
 (p.17)

Similarly for $k \ge 0$, $\|\mathcal{P}_{i-k}W_i^2\|_{\frac{\alpha}{2}} \le 2c_{\alpha}\Theta_{\alpha}\sqrt{i-t_i+1}\sum_{j=t_i}^i \delta_{\alpha}(k+t_i-j)$ \circ Note that $\mathcal{P}_{i-k}W_i^2$, $i \in \mathbb{Z}$ form MDS, so $\|\sum_{i=1}^n \mathcal{P}_{i-k}W_i^2\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$ $\circ \le c_{\alpha}\sum_{i=1}^n \|\mathcal{P}_{i-k}W_i^2\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}}$ (by Burkholder's inequality) $\circ \le c_{\alpha}\Theta_{\alpha}^{\frac{\alpha}{2}}\sum_{i=1}^n [\sqrt{i-t_i+1}\sum_{j=t_i}^i \delta_{\alpha}(k+t_i-j)]^{\frac{\alpha}{2}}$ (by moment inequality)

Proof of theorem 2.1:
$$\|V_n - E(V_n)\|_{\frac{\alpha}{2}} = O\left(n^{\frac{3}{2} - \frac{3}{2p} + \frac{2}{\alpha}}\right) \text{ (p.18)}$$

Consider first term from blocking $\sum_{k=0}^{\infty} \|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\|_{\frac{\alpha}{2}}, \sum_{k=2b_{m}}^{\infty} \|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\|_{\frac{\alpha}{2}}$

$$\circ \leq O(1) \sum_{k=2b_m}^{\infty} \left\{ \sum_{i=1}^n \left[\sqrt{i - t_i + 1} \sum_{j=0}^{b_m} \delta_{\alpha}(k - j) \right]^{\frac{\alpha}{2}} \right\}^{\frac{2}{\alpha}} \text{ (by moment inequality in last slide)}$$

2

 $<\infty$)

 $\,\circ\,\,$ The summation index can be change since $i-t_i\leq b_m$ and $k-b_m>0$

$$\circ \leq O(1) \left[\sum_{i=1}^{n} (i - t_i + 1)^{\frac{\alpha}{4}} \right]^{\frac{2}{\alpha}} \sum_{k=2b_m}^{\infty} \sum_{j=0}^{b_m} \delta_{\alpha}(k - j) \text{ (by independence of summation index)}$$

• The inequality sign in this step should be equal?

$$\circ = O\left(n^{\frac{2}{\alpha}}b_{m}^{\frac{1}{2}}\right)o(b_{m}) \text{ (by } i - t_{i} \leq b_{m} \text{ and } \Delta_{\alpha} = \sum_{j=0}^{\infty}\delta_{\alpha}(j)$$

$$\circ = O\left(n^{\frac{2}{\alpha}}b_{m}^{\frac{3}{2}}\right)$$

$$\circ = O\left(n^{\frac{2}{\alpha}+\frac{3}{2}-\frac{3}{2p}}\right) \text{ (since } b_{m} = O\left(m^{\frac{1}{p}}\right) = O\left(n^{1-\frac{1}{p}}\right)$$

Proof of theorem 2.1:
$$\|V_n - E(V_n)\|_{\frac{\alpha}{2}} = O\left(n^{\frac{3}{2} - \frac{3}{2p} + \frac{2}{\alpha}}\right) \text{ (p.18)}$$

Consider second term from blocking, $\sum_{k=0}^{2b_m-1} \|\sum_{i=1}^n \mathcal{P}_{i-k} W_i^2\|_{\frac{\alpha}{2}}$

$$\leq O(1) \left[\sum_{i=1}^{n} (i - t_i + 1)^{\frac{\alpha}{4}} \right]^{\frac{2}{\alpha}} \sum_{k=0}^{2b_m - 1} \sum_{j=t_i}^{i} \delta_{\alpha}(k + t_i - j) \text{ (same steps as last slide)}$$
$$= \left[\sum_{i=1}^{n} (i - t_i + 1)^{\frac{\alpha}{4}} \right]^{\frac{2}{\alpha}} O(b_m) \text{ (use big 0 because summation index cannot be changed)}$$

• =
$$O\left(n^{\frac{2}{\alpha}+\frac{3}{2}-\frac{3}{2p}}\right)$$
 (same steps as last slide)

Hence
$$\sum_{k=0}^{\infty} \|\sum_{i=1}^{n} \mathcal{P}_{i-k} W_{i}^{2}\|_{\frac{\alpha}{2}} = o\left(n^{\frac{2}{\alpha} + \frac{3}{2} - \frac{3}{2p}}\right) + O\left(n^{\frac{2}{\alpha} + \frac{3}{2} - \frac{3}{2p}}\right)$$

 $\circ = O\left(n^{\frac{2}{\alpha} + \frac{3}{2} - \frac{3}{2p}}\right) + O\left(n^{\frac{2}{\alpha} + \frac{3}{2} - \frac{3}{2p}}\right)$ (little o implies big 0)
 $\circ = O\left(n^{\frac{2}{\alpha} + \frac{3}{2} - \frac{3}{2p}}\right)$

Proof of theorem 2.1: summary of techniques

Asymptotic approximation

- Approximate finite difference and sum by differential and integral
 - Be aware of the definition of Riemann sum (e.g. you may need to perform change of variable)
- Identify the dominating term
- \circ Blocking: relate number of blocks m with sample size n

Handle multiple sum

- By blocking and bounding each block size
 - $\,\circ\,\,$ Terms in a double sum may becomes independent. See last two slides
- Break down power into product with maximum

• E.g. $\sum_{t=1}^{n} t^p \le \left(\max_{1 \le t \le n} t\right) \sum_{t=1}^{n} t^{p-1}$

SECTION 3.2.2

Convergence rate, $\alpha > 4$

Proof of theorem 2.2:
$$\lim_{n \to \infty} \frac{\|V_n - E(V_n)\|}{n^{2 - \frac{3}{2p}}} = \frac{\sigma^2 p^2 c^{\frac{3}{2p}}}{\sqrt{12p - 9}} \text{ (p.20)}$$

Notice that the condition changes from $\Delta_{\alpha} < \infty$ for some $\alpha \in (2,4]$ (T2.1) to $\alpha > 4$ (T2.2)

- But the convergence rate is same for $\alpha = 4$ (T2.1) and $\alpha > 4$ (T2.2)
 - This means stronger moment conditions cannot give faster convergence rate. See moment inequality (previous slide p.20)
- Theorem 2.2 gives a close form of asymptotic MSE (AMSE) though
 - $||V_n E(V_n)|| = \sqrt{E|V_n E(V_n)|^2}$, which can give us MSE after some modifications
- Proof of T2.2 requires the use of lemma 1, which we shall prove later

Lemma 1: assume $X_i \in \mathcal{L}^{\alpha}$, $E(X_i = 0)$ and $\Delta_{\alpha} < \infty$ for $\alpha > 4$ (conditions of T2.2)

- Let $S_i = \sum_{j=1}^{i} X_j$ (the subscript should be *j*, probably typo in the paper)
- Then $\left\|\sum_{i=1}^{l} \left[E(S_{i}^{2} | \mathcal{F}_{1}) E(S_{i}^{2}) \right] \right\| = o(l^{2})$
- We also have $\lim_{l \to \infty} \frac{1}{l^4} \left\| \sum_{i=1}^l [S_i^2 E(S_i^2)] \right\|^2 = \frac{1}{3} \sigma^4$

Proof of theorem 2.2:
$$\lim_{n \to \infty} \frac{\|V_n - E(V_n)\|}{n^{2 - \frac{3}{2p}}} = \frac{\sigma^2 p^2 c^{\frac{3}{2p}}}{\sqrt{12p - 9}} \text{ (p.18)}$$

Let block sum of square $G_{h+1} = \sum_{i=a_h}^{a_{h+1}-1} W_i^2$ (target is $V_{a_{m+1}} = \sum_{h=1}^m G_{h+1}$)

 $\,\circ\,$ It differs from ${\tilde Y}_k$ in the sense that martingale approximation is not used

• By lemma 1,
$$\lim_{h \to \infty} \frac{1}{(a_{h+1}-a_h)^4} \left\| G_{h+1} - E(G_{h+1}|\mathcal{F}_{a_h}) \right\|^2 = \frac{1}{3}\sigma^4$$

• Since $G_{h+1} - E(G_{h+1}|\mathcal{F}_{a_h})$ is MDS wrt $\mathcal{F}_{a_{h+1}}$, we have $\left\| \sum_{h=1}^m [G_{h+1} - E(G_{h+1}|\mathcal{F}_{a_h})] \right\|^2$
• $= \sum_{h=1}^m E \left| G_{h+1} - E(G_{h+1}|\mathcal{F}_{a_h}) \right|^2$ (MDS is uncorrelated)
• $\sim \frac{1}{3}\sigma^4 \sum_{h=1}^m (a_{h+1} - a_h)^4$ (by lemma 1)
• $\sim \frac{1}{3}\sigma^4 \sum_{h=1}^m c^4 p^4 h^{4p-4}$ (by considering the differential $a_h - a_{h-1} \sim cph^{p-1}$)
• $\sim \frac{p^4 c^4}{3(4p-3)} m^{4p-3} \sigma^4$ (by approximating sum $\sum_{x=1}^m$ with integral $\int_1^m dx$)
• $\sim \frac{p^4 c^{\frac{3}{p}}}{12p-9} n^{4-\frac{3}{p}} \sigma^4$ (by $n \sim cm^p \Rightarrow m \sim \left(\frac{n}{c}\right)^{\frac{1}{p}}$

Proof of theorem 2.2:
$$\lim_{n \to \infty} \frac{\|V_n - E(V_n)\|}{n^{2-\frac{3}{2p}}} = \frac{\sigma^2 p^2 c^{\frac{3}{2p}}}{\sqrt{12p-9}} \text{ (p.18-19)}$$

Similarly,
$$\left\|\sum_{h=1}^{m} \left[E\left(G_{h+1} \middle| \mathcal{F}_{a_{h}}\right) - E\left(G_{h+1} \middle| \mathcal{F}_{a_{h-1}}\right)\right]\right\|^{2}$$

 $\circ = \sum_{h=1}^{m} E\left|E\left(G_{h+1} \middle| \mathcal{F}_{a_{h}}\right) - E\left(G_{h+1} \middle| \mathcal{F}_{a_{h-1}}\right)\right|^{2}$ (MDS is uncorrelated)
 $\circ \leq \sum_{h=1}^{m} E\left|E\left(G_{h+1} \middle| \mathcal{F}_{a_{h}}\right) - E\left(G_{h+1}\right)\right|^{2}$ (by towering and Eve's law)
 $\circ = \sum_{h=1}^{m} o\left[(a_{h+1} - a_{h})^{4}\right] = o\left(n^{4-\frac{3}{p}}\right)$ (by lemma 1 and result in last slide)

Now deal with $\Xi_m \stackrel{\text{\tiny def}}{=} \sum_{h=1}^m \left[E(G_{h+1} | \mathcal{F}_{a_{h-1}}) - E(G_{h+1}) \right]$

- The goal of Ξ_m is to connect everything for $\|\sum_{h=1}^m [G_{h+1} E(G_{h+1})]\| = \|V_{a_m} E(V_{a_m})\|$
- Since $E(W_i^2 | \mathcal{F}_{a_{h-1}}) E(W_i^2) = \sum_{k=0}^{\infty} \mathcal{P}_{i-k} E(W_i^2 | \mathcal{F}_{a_{h-1}})$ for $a_h \le i < a_{h+1}$

This follows from definition of projection and tower property

• We have
$$\|\Xi_m\| \leq \sum_{k=0}^{\infty} \left\|\sum_{h=1}^m \sum_{i=a_h}^{a_{h+1}-1} \mathcal{P}_{i-k} E\left(W_i^2 | \mathcal{F}_{a_{h-1}}\right)\right\|$$
 (by Minkowski inequality)

 $\circ = \sum_{k=0}^{\infty} \sqrt{\sum_{h=1}^{m} \sum_{i=a_h}^{a_{h+1}-1} E \left| \mathcal{P}_{i-k} E \left(W_i^2 | \mathcal{F}_{a_{h-1}} \right) \right|^2}$ (by linearity of expectation and property of MDS)

Proof of theorem 2.2:
$$\lim_{n \to \infty} \frac{\|V_n - E(V_n)\|}{n^{2-\frac{3}{2p}}} = \frac{\sigma^2 p^2 c^{\frac{3}{2p}}}{\sqrt{12p-9}} \text{ (p.19)}$$

Observe that
$$\mathcal{P}_{i-k}E(W_i^2|\mathcal{F}_{a_{h-1}}) = \begin{cases} 0, \ i-k > a_{h-1} \\ \mathcal{P}_{i-k}W_i^2, \ i-k \le a_{h-1} \end{cases}$$
 (by property of projection)
 \circ Hence $\sum_{k=2b_m}^{\infty} \sqrt{\sum_{h=1}^m \sum_{i=a_h}^{a_{h+1}-1} E|\mathcal{P}_{i-k}E(W_i^2|\mathcal{F}_{a_{h-1}})|^2}$
 $\circ \le O(1) \sum_{k=2b_m}^{\infty} \sqrt{\sum_{h=1}^m \sum_{i=a_h}^{a_{h+1}-1} (i-t_i+1) \left[\sum_{j=0}^{b_m} \delta_4(j)\right]^2}$ (mimic proof of $\sum_{k=2b_m}^{\infty} \|\sum_{i=1}^n \mathcal{P}_{i-k}W_i^2\|_{\frac{\alpha}{2}}$
 $\circ = O\left(n^{\frac{1}{2}}b_m^{\frac{1}{2}}\right) o(b_m) = o(n^{2-\frac{3}{2p}})$ (mimic proof of $\sum_{k=2b_m}^{\infty} \|\sum_{i=1}^n \mathcal{P}_{i-k}W_i^2\|_{\frac{\alpha}{2}}$

Proof of theorem 2.2:
$$\lim_{n \to \infty} \frac{\|V_n - E(V_n)\|}{n^{2-\frac{3}{2p}}} = \frac{\sigma^2 p^2 c^{\frac{3}{2p}}}{\sqrt{12p-9}} \text{ (p.19)}$$

Now consider
$$\sum_{k=0}^{2b_m-1} \sqrt{\sum_{h=1}^m \sum_{i=a_h}^{a_{h+1}-1} E \left| \mathcal{P}_{i-k} E \left(W_i^2 \right| \mathcal{F}_{a_{h-1}} \right) \right|^2}$$

 $\circ \leq O(1) \sum_{k=2b_m}^{\infty} \sqrt{\sum_{h=1}^m \sum_{i=a_h}^{a_{h+1}-1} (i - t_i + 1) \left[\sum_{j=k+t_i-i}^i \delta_4(j) \right]^2 \mathbb{I}(i - k \leq a_{h-1})}$ (mimic proof of $\| \mathcal{P}_{i-k} W_i^2 \|_{\frac{\alpha}{2}}$
 $\circ = O(1) \sum_{k=2b_m}^{\infty} \sqrt{\sum_{h=1}^m \sum_{i=a_h}^{a_{h+1}-1} (i - t_i + 1) \Delta_4^2 (a_h - a_{h-1})}$ (by definition of stability, not multiply!)
 $\circ = O(1) \sum_{k=2b_m}^{\infty} \sqrt{\sum_{h=1}^m (a_{h+1} - a_h)^2 \Delta_4^2 (a_h - a_{h-1})}$ (by blocking)
 $\circ = O(1) \sum_{k=2b_m}^{\infty} \sqrt{\sum_{h=1}^m (a_{h+1} - a_h)^2 O(1)}$ (by $\Delta_4^2 (a_h - a_{h-1}) \to 0$ as $a_h - a_{h-1} \to \infty$)
 $\circ = O(1) \sum_{k=2b_m}^{\infty} \sqrt{\sum_{h=1}^m O(h^{2p-2})}$ (by $a_h - a_{h-1} = O(h^{p-1})$)
 $\circ = O\left(b_m m^{p-\frac{1}{2}}\right) = O\left(n^{2-\frac{3}{2p}}\right)$ (by $b_m = O\left(n^{1-\frac{1}{p}}\right)$ and $m \sim \left(\frac{n}{c}\right)^{\frac{1}{p}}$

Proof of theorem 2.2:
$$\lim_{n \to \infty} \frac{\|V_n - E(V_n)\|}{n^{2 - \frac{3}{2p}}} = \frac{\sigma^2 p^2 c^{\frac{3}{2p}}}{\sqrt{12p - 9}} \text{ (p.19)}$$

We have proved
$$\lim_{n \to \infty} \frac{\left\|\sum_{h=1}^{m} \left[G_{h+1} - E\left(G_{h+1} \middle| \mathcal{F}_{a_h}\right)\right]\right\|}{n^{2-\frac{3}{2p}}} = \frac{\sigma^2 p^2 c^{\frac{3}{2p}}}{\sqrt{12p-9}} \text{ (four slides ago)}$$

$$\circ \left\|\sum_{h=1}^{m} \left[G_{h+1} - E\left(G_{h+1} \middle| \mathcal{F}_{a_h}\right)\right]\right\| \approx \left\|\sum_{h=1}^{m} \left[G_{h+1} - E\left(G_{h+1}\right)\right]\right\| = \left\|V_{a_{m+1}} - E\left(V_{a_{m+1}}\right)\right\| \text{ (last three slides)}$$

$$\circ \text{ It remains to show that } \left\|V_{a_{m+1}} - E\left(V_{a_{m+1}}\right)\right\| \approx \left\|V_n - E(V_n)\right\|$$

$$\circ \text{ Now consider the remainder term } \left\|\sum_{i=n}^{a_{m+1}-1} \left[W_i^2 - E\left(W_i^2\right)\right]\right\|$$

$$\circ \leq \sum_{i=n}^{a_{m+1}-1} \left\|W_i^2 - E\left(W_i^2\right)\right\| \text{ (by Minkowski inequality)}$$

$$\circ \leq \sum_{i=n}^{a_{m+1}-1} \left\|W_i^2\right\| \text{ (since } W_i^2 \text{ is non negative)}$$

$$\circ = O(b_m^2) \text{ (recall the sum is a isosceles triangular shaped)}$$

$$\circ = O\left(n^{2-\frac{2}{p}}\right) \ll o\left(n^{2-\frac{3}{2p}}\right) \text{ (by } b_m = O\left(n^{1-\frac{1}{p}}\right) \text{ and } p > 1)$$

Proof of lemma 1:
$$\left\|\sum_{i=1}^{l} \left[E(S_{i}^{2}|\mathcal{F}_{1}) - E(S_{i}^{2})\right]\right\| = o(l^{2}) \text{ (p.20)}$$

Recall $S_i = \sum_{j=1}^i X_j$. Mimicking proof of $\|\mathcal{P}_{i-k}W_i^2\|_{\frac{\alpha}{2}}$, we have

•
$$\left\| \mathcal{P}_r S_i^2 \right\| \le C \sqrt{i} \sum_{j=1}^i \delta_2(j-r)$$
 for $r \le 1$ where $C = 2c_2 \Theta_2$

• Since $\sum_{i=1}^{l} \left[E(S_i^2 | \mathcal{F}_1) - E(S_i^2) \right] = \sum_{r=-\infty}^{1} \sum_{i=1}^{l} \mathcal{P}_r S_i^2$ (definition of projection), we have

$$\circ \left\|\sum_{i=1}^{l} \left[E\left(S_{i}^{2} \middle| \mathcal{F}_{1}\right) - E\left(S_{i}^{2}\right) \right] \right\|^{2} = \sum_{r=-\infty}^{1} \left\|\sum_{i=1}^{l} \mathcal{P}_{r} S_{i}^{2}\right\|^{2} \text{ (MDS is uncorrelated)}$$

$$\circ \leq \sum_{r=-\infty}^{1} \left(\sum_{i=1}^{l} \left\| \mathcal{P}_{r} S_{i}^{2} \right\| \right)^{2}$$
 (by Minkowski inequality)

- $\circ \leq \sum_{r=-\infty}^{1} \left(C l^{\frac{3}{2}} \sum_{j=1}^{l} \delta_2(j-r) \right)^2$ (by inequality above and bounding $\sum_{j=1}^{i} \delta_2(j-r)$ with $l \delta_2(j-r)$)
 - Is it possible that $\sum_{j=1}^{i} \delta_2(j-r) > l \Rightarrow \sum_{i=1}^{l} \sum_{j=1}^{i} \delta_2(j-r) > l \sum_{j=1}^{l} \delta_2(j-r)$? Then this step do not hold
 - However the result is still correct by considering $\sum_{i=1}^{l} \sum_{j=1}^{i} \delta_2(j-r) \le \left[\sum_{j=1}^{l} \delta_2(j-r)\right]^2$

$$\leq C^2 l^3 \Delta_2 \sum_{j=1}^l \sum_{r=-\infty}^1 \delta_2(j-r) \left(\text{by} \left[\sum_{j=1}^l \delta_2(j-r) \right]^2 \leq \Delta_2 \sum_{j=1}^l \delta_2(j-r) \right)$$

$$= O(l^3) o(l) = o(l^4) \left(\text{by} \Delta_\alpha < \infty \text{ for } \alpha > 4 \right)$$

Proof of lemma 1: $\lim_{l \to \infty} \frac{1}{l^4} \left\| \sum_{i=1}^{l} \left[S_i^2 - E(S_i^2) \right] \right\|^2 = \frac{1}{3} \sigma^4 \text{ (p.21)}$

Let $A_l = \frac{1}{l^2} \sum_{i=1}^l S_i^2$. By invariance principle and continuous mapping theorem, $A_l \stackrel{d}{\rightarrow} \sigma^2 \int_0^1 W_t^2 dt$ (continuous mapping changes sum to integral, probably typo for IB) By theorem 1 in Wu (2007), $||S_i||_{\alpha} = O(\sqrt{i})$ (moment inequality) $Hence ||A_l||_{\frac{\alpha}{2}} \leq \frac{1}{l^2} \sum_{i=1}^l ||S_i^2||_{\frac{\alpha}{2}}$ (by Minkowski inequality) $\leq \frac{1}{l^2} \sum_{i=1}^l ||S_i||_{\alpha}^2$ (by definition of norm, should be equal?) $= \frac{1}{l^2} \sum_{i=1}^l O(i) = O(1)$ (by moment inequality) $Since \frac{\alpha}{2} > 2$, { $[A_l - E(A_l)]^2$, $l \ge 1$ } is uniformly integrable (Chow and Teicher, 1988) Hence weak convergence of A_l implies the \mathcal{L}^2 moment convergence, which is

$$\circ E\{[A_l - E(A_l)]^2\} \rightarrow \sigma^4 E\left\{\int_0^1 [W_t^2 - E(W_t^2)]dt\right\}^2 = \frac{1}{3}\sigma^4 \text{ (by stochastic calculus, not trivial...)}$$

Proof of lemma 1:

$$E\left\{\int_0^1 [W_t^2 - E(W_t^2)]dt\right\}^2 = \frac{1}{3}$$

Let
$$f(t, w) = \frac{1}{6}w^4$$
. We have $\frac{\partial f}{\partial t} = 0$, $\frac{\partial f}{\partial w} = \frac{2}{3}w^3$ and $\frac{\partial^2 f}{\partial w^2} = 2w^2$. Note that $\mu = 0$ and $\sigma = 1$.
• $df(t, W_t) = \left[\frac{\partial f}{\partial t} + \mu \frac{\partial f}{\partial W_t} + \frac{1}{2}\sigma^2 \frac{\partial^2 f}{\partial W_t^2}\right] dt + \sigma \frac{\partial f}{\partial W_t} dW_t = W_t^2 dt + \frac{2}{3}W_t^3 dW_t$ (by ltô's lemma)
• Rearranging the terms, $\int_0^1 W_t^2 dt = \frac{1}{6}W_1^4 - \frac{2}{3}\int_0^1 W_t^3 dW_t = \frac{1}{2} + \sqrt{\frac{1}{3}}Z$ where $Z \sim N(0,1)$
• $E\left(\int_0^1 W_t^2 dt\right) = \frac{1}{6}E(W_1^4) = \frac{3!!}{6} = \frac{1}{2}$ (by martingale property and $E(X^{2n}) = \sigma^{2n}(2n-1)!!$ if $X \sim N(0,\sigma^2)$. See this Q&A)
• $E\left[\left(\int_0^1 W_t^2 dt\right)^2\right] = E\left(\int_0^1 \int_0^1 W_t^2 W_s^2 dt ds\right) = \int_0^1 \int_0^1 E(W_t^2 W_s^2) dt ds$ (by Fubini's theorem)
• $g_0^1 \int_0^S E[(W_s - W_t)^2 W_t^2 + 2(W_s - W_t) W_t^3 + W_t^4] dt ds + \int_0^1 \int_s^1 E[(W_t - W_s)^2 W_s^2 + 2(W_t - W_s) W_s^3 + W_s^4] dt ds$
• $g_0^1 \int_0^S [(s-t)t + 3t^2] dt ds + \int_0^1 \int_s^1 [(t-s)s + 3s^2] dt ds$ (by independent increment and $E(X^{2n+1}) = 0$ if $X \sim N(0,\sigma^2)$)
• $\frac{2}{7} \frac{1}{24} + \frac{7}{24} = \frac{7}{12}$, so $Var\left(\int_0^1 W_t^2 dt\right) = \frac{7}{12} - \frac{1}{4} = \frac{1}{3}$

• Hence using representation, $E\left\{\int_0^1 [W_t^2 - E(W_t^2)]dt\right\}^2 = E\left(\frac{1}{3}Z^2\right) = \frac{1}{3}$

Proof of theorem 2.2 and lemma 1: summary of techniques

Stochastic calculus (my RMSC5102 note has a quick summary)

- Useful when we combine invariance principle and continuous mapping theorem
- Break down product of wiener process into sum of independent increment (see last slide)
- Vitali convergence theorem: a sequence of random variables converging in probability also converge in the mean if and only if they are uniformly integrable
 - A class of random variables bounded in L^p , p > 1 is uniformly integrable (see two slides ago)
 - See Theorem 5.5.2 in Probability Theory and Examples by Durrett

Convergence rate, $\alpha = 2$

SECTION 3.2.3

Proof of theorem 2.3:

$$E(V_n - v_n \sigma^2) = O[n^{1 + (1 - q)(1 - \frac{1}{p})}]$$
 (p.20)

We do not have moment inequality when $\alpha = 2$ (i.e. in \mathcal{L}^1). Alternative strategy is needed.

- Let j > 0. To bound the autocovariance, we have $|\gamma(j)| = |E(X_0X_j)|$
- = $|E[\sum_{i \in \mathbb{Z}} (\mathcal{P}_i X_0)(\mathcal{P}_i X_j)]|$ (projection decomposition, $X_j = \sum_{i \in \mathbb{Z}} \mathcal{P}_i X_j$)
- $\circ \leq \sum_{i \in \mathbb{Z}} E |(\mathcal{P}_i X_0) (\mathcal{P}_i X_j)|$ (by Minkowski inequality)
- $\circ \leq \sum_{i \in \mathbb{Z}} \|(\mathcal{P}_i X_0)\| \| (\mathcal{P}_i X_j) \|$ (by Cauchy–Schwarz inequality)

 $\,\circ\,\,$ Orthogonality of projection gives a equal sign here but it does not affect the result

$$\circ \leq \sum_{i=0}^{\infty} \omega(i) \omega(i+j)$$
 (by $\|\mathcal{P}_0 X_i\|_p \leq \omega_p(i)$ and $\omega_p(i) = 0$ if $i < 0$)

For $S_l = X_1 + \dots + X_l$, since $\sum_{j=0}^{\infty} j^q \omega(j) < \infty$ for some $q \in (0,1]$ (by assumption)

- We have $|E(S_l^2) l\sigma^2| = |l\gamma(0) + 2\sum_{j=1}^l (l-j)\gamma(j) l\sum_{j\in\mathbb{Z}}\gamma(j)|$ (by representation of TAVC)
- $\sim \leq 2 \sum_{j=1}^{\infty} \min(j, l) |\gamma(j)|$ (by Minkowski inequality)
- $\circ \leq 2\sum_{j=1}^{\infty} \min(j,l)^{1-q} \sum_{i=0}^{\infty} \min(j,l)^q \, \omega(i) \omega(i+j) = O(l^{1-q}) \text{ (by } \sum_{j=0}^{\infty} j^q \omega(j) < \infty)$

Proof of theorem 2.3:

$$E(V_n - v_n \sigma^2) = O[n^{1 + (1 - q)(1 - \frac{1}{p})}]$$
 (p.20)

Combining the results, we have $|E(V_n - v_n \sigma^2)|$ (t_n should be v_n , probably typo)

$$\circ \leq \sum_{i=1}^{n} |E(W_i) - (i - t_i + 1)\sigma^2|$$
 (by Minkowski inequality)

$$\circ = \sum_{i=1}^{n} O[(i - t_i + 1)^{1-q}] \text{ (by } \left| E(S_l^2) - l\sigma^2 \right| = O(l^{1-q}))$$

• = $O(nb_m^{1-q})$ (since b_m is the bound of batch size)

• =
$$O[n^{1+(1-q)(1-\frac{1}{p})}]$$
 (by $b_m = O(n^{1-\frac{1}{p}})$)

Proof of theorem 2.3: summary of techniques

Moment inequality is not available in \mathcal{L}^1

- Bound the target using projection decomposition and Wu's dependence measures
 - The polynomial decay rate of stability determines convergence rate

SECTION 3.3

Almost sure convergence

Almost sure convergence (p.9)

Glynn and Whitt (1992) argued that strongly consistent estimate of σ is needed

- For asymptotic validity of sequential confidence intervals
- Hence we need to consider the almost sure convergence behaviour for MCMC application

Corollary 3: Under the conditions in corollary 2,

• i.e. choose
$$a_k = \lfloor ck^p \rfloor$$
, $p = \frac{\frac{1}{2} + q}{q - \frac{1}{2} + \frac{2}{\alpha}}$ and assume $X_i \in \mathcal{L}^{\alpha}$, $E(X_i) = 0$ and $\Delta_{\alpha} < \infty$ for some $\alpha > 2$
• Or $X_i \in \mathcal{L}^2$, $E(X_i) = 0$ and $\sum_{j=0}^{\infty} j^q \omega(j) < \infty$ for some $q \in (0,1]$
• We have $\left\| \max_{n \le N} |V_n - E(V_n)| \right\|_{\frac{\alpha}{2}} = O(N^{\tau} \log N)$ where $\tau = \frac{3}{2} - \frac{3}{2p} + \frac{2}{\alpha}$

 $\,\circ\,\,$ Note that τ is the convergence rate from theorem 2

• Also
$$V_N - E(V_N) = o_{a.s.}[N^{\tau}(\log N)^2]$$
 and $\frac{V_N}{v_N} - \sigma^2 = o_{a.s.}\left[N^{\frac{2}{\alpha}-\frac{1}{2}-\frac{1}{2p}}(\log N)^2\right]$

• Possible to improve using strong invariance principle in Berkes, Liu and Wu (2014)?

Proof of corollary 3:
$$\left\|\max_{n\leq N}|V_n - E(V_n)|\right\|_{\frac{\alpha}{2}} = O(N^{\tau}\log N) \text{ (p.21)}$$

Choose $d \in \mathbb{N}$ such that $2^{d-1} < N \leq 2^d$ (for the use of Borel-Cantelli lemma later?) \circ For $1 \leq a < b$, $||V_a - V_b - E(V_b - V_a)||_{\frac{\alpha}{2}} = ||\sum_{i=a+1}^b [W_i^2 - E(W_i^2)]||_{\frac{\alpha}{2}}$ $\circ \leq \sum_{k=0}^{\infty} ||\sum_{i=a+1}^b \mathcal{P}_{i-k}W_i^2||_{\frac{\alpha}{2}}$ (by projection decomposition and Minkowski inequality) $\circ = \sum_{k=0}^{\infty} \left[\sum_{i=a}^b (i - t_i + 1)^{\frac{\alpha}{4}}\right]^{\frac{\alpha}{\alpha}} O(b^{1-\frac{1}{p}})$ (mimic proof of $\sum_{k=0}^{2bm-1} ||\sum_{i=1}^n \mathcal{P}_{i-k}W_i^2||_{\frac{\alpha}{2}}$ $\circ = O\left[(b-a)^{\frac{\alpha}{\alpha}}b^{\frac{1}{2}(1-\frac{1}{p})}\right] O(b^{1-\frac{1}{p}}) = O\left[(b-a)^{\frac{\alpha}{\alpha}}b^{\frac{3}{2}(1-\frac{1}{p})}\right]$

• Note that the bound of batch/block size is $b_m = O(n^{1-\frac{1}{p}})$ and bound of sample size is b here

Proof of corollary 3:
$$\left\|\max_{n\leq N}|V_n - E(V_n)|\right\|_{\frac{\alpha}{2}} = O(N^{\tau}\log N) \text{ (p.21-22)}$$

By proposition 1 in Wu (2007), $\left\|\max_{n\leq 2^d} |V_n - E(V_n)|\right\|_{\underline{\alpha}}$ (maximal inequality) $\circ \leq \sum_{r=0}^{d} \left[\sum_{l=1}^{2^{d-r}} \left\| V_{2^{r_{l}}} - V_{2^{r_{(l-1)}}} - E \left[V_{2^{r_{l}}} - V_{2^{r_{(l-1)}}} \right] \right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} \right]^{\overline{\alpha}}$ $\circ = \sum_{r=0}^{d} \left\{ \sum_{l=1}^{2^{d-r}} O\left[(2^{r})^{\frac{2}{\alpha}} (2^{r}l)^{\frac{3}{2} \left(1-\frac{1}{p}\right)} \right]^{\frac{\alpha}{2}} \right\}^{\frac{\gamma}{\alpha}}$ (by moment inequality proved in last slide) $\circ = \sum_{r=0}^{d} \left\{ O\left[(2^r)^{1 + \frac{3\alpha}{4} \left(1 - \frac{1}{p}\right)} \right] \sum_{l=1}^{2^{d-r}} O\left[l^{\frac{3\alpha}{4} \left(1 - \frac{1}{p}\right)} \right] \right\}^{\frac{2}{\alpha}}$ (by independence of summation index) $\circ \leq \sum_{r=0}^{d} \left\{ O\left[\left(2^{d}\right)^{1 + \frac{3\alpha}{4} \left(1 - \frac{1}{p}\right)} \right] \right\}^{\frac{2}{\alpha}} \text{ (since } l \leq 2^{d-r} \text{)}$ $\circ = O(d+1)O\left[(2^d)^{\frac{2}{\alpha}+\frac{3}{2}-\frac{3}{2p}}\right]$ • = $O(N^{\tau} \log N)$ (since $\tau = \frac{3}{2} - \frac{3}{2n} + \frac{2}{n}$ and $N \le 2^d \Rightarrow \log N \le d$)

Proof of corollary 3:

$$V_N - E(V_N) = o_{a.s.}[N^{\tau}(\log N)^2]$$
 (p.22)

Note that
$$\frac{\alpha}{2} > 1$$
. From $\left\| \max_{n \le N} |V_n - E(V_n)| \right\|_{\frac{\alpha}{2}} = O(N^{\tau} \log N)$ (proved in last two slides),
 \circ We have $\frac{1}{(2^{d\tau}d^2)^{\frac{\alpha}{2}}} \sum_{d=1}^{\infty} \left\| \max_{n \le 2^d} |V_n - E(V_n)| \right\|_{\frac{\alpha}{2}}^{\frac{\alpha}{2}} = \sum_{d=1}^{\infty} \frac{O[(d+1)2^{d\tau}]^{\frac{\alpha}{2}}}{(2^{d\tau}d^2)^{\frac{\alpha}{2}}} = \sum_{d=1}^{\infty} O(d^{-\frac{\alpha}{2}}) < \infty$
 \circ Hence $V_N - E(V_N) = o_{a.s.}[N^{\tau}(\log N)^2]$ (by Borel-Cantelli lemma)
 \circ Borel-Cantelli lemma: for a sequence of events $E_1, ..., \text{ if } \sum_{n=1}^{\infty} P(E_n) < \infty$, then $P(\limsup_{n \to \infty} E_n) = 0$
 $\circ P\left[\frac{\max_{n \le N} |V_n - E(V_n)|}{N^{\tau}(\log N)^2} > \epsilon\right] = E\left[\mathbb{I}\left[\frac{\max_{n \le N} |V_n - E(V_n)|}{N^{\tau}(\log N)^2} > \epsilon\right]\right]$ for all $\epsilon > 0$ (write probability as expectation of indicator)
 $\circ \le E\left[\frac{\max_{n \le N} |V_n - E(V_n)|}{N^{\tau}(\log N)^2 \epsilon}\right]$ (by Markov inequality)
 $\circ \le \frac{1}{N^{\frac{\tau\alpha}{2}}(\log N)^{\alpha}}\left|\max_{n \le 2^d} |V_n - E(V_n)|\right| \frac{\alpha}{2}$ (by property of norm and $\frac{\alpha}{2} > 1$)

Proof of corollary 3:

$$\frac{V_N}{v_N} - \sigma^2 = o_{a.s.} \left[N^{\frac{2}{\alpha} - \frac{1}{2} - \frac{1}{2p}} (\log N)^2 \right] (p.22)$$

Note that $V_N - E(V_N) = o_{a.s.}[N^{\tau}(\log N)^2]$ (proved in last slide)

• And $E(V_n - v_n \sigma^2) = O\left[n^{1 + (1-q)\left(1 - \frac{1}{p}\right)}\right]$ (theorem 2.3, probably typo in t_n)

• By choosing optimal rate
$$p = \frac{\frac{1}{2} + q}{q - \frac{1}{2} + \frac{2}{\alpha}}$$
, $E(V_N - v_N \sigma^2) = O(N^{\tau}) \ll o[N^{\tau}(\log N)^2]$

• We have
$$V_N - v_N \sigma^2 = o_{a.s.} \left[N^{\frac{3}{2} - \frac{3}{2p} + \frac{2}{\alpha}} (\log N)^2 \right]$$

• Finally recall $v_N = O(N^{2-\frac{1}{p}})$ (proved in discussion of convergence rate when $\mu \neq 0$)

• Hence
$$\frac{V_N}{v_N} - \sigma^2 = o_{a.s.} \left[N^{\frac{2}{\alpha} - \frac{1}{2} - \frac{1}{2p}} (\log N)^2 \right]$$
 (little o times big O is little o)

Proof of corollary 3: summary of techniques

Establish almost sure convergence

- Use maximal inequality
- Apply Borel-Cantelli lemma on maximal with expanding samples
 - Cantor's diagonal argument?
 - Idea: \mathcal{L}^p convergence with fast enough convergence rate implies almost sure convergence

Implementation issues

SECTION 4

Remaining question (p.9)

We can see that choice of block start a_k uniquely determines property of recursive TAVC

- The batch size l_i is determined by the selection rule (e.g. Δ SR, TSR, PSR)
- Under the simple choice $a_k = \lfloor ck^p \rfloor$, we have established the optimal choice of p
- It suffices to find the optimal choice of *c* in order to minimize AMSE

Assume $\Delta_{\alpha} < \infty$ for some $\alpha > 4$ and $\sum_{j=0}^{\infty} j^{q} \omega(j) < \infty$ for q = 1

- $\,\circ\,\,$ Need $\alpha>4$ for close form of AMSE (T2.2) and q=1 for finite bias
- By corollary 2, optimal choice of $p = \frac{3}{2}$
- Choose data driven estimate of c by procedure in Bühlmann and Künsch (1999)

Close form of AMSE (p.10)

Since $\sum_{j=0}^{\infty} j\omega(j) < \infty$, $\sum_{i=1}^{\infty} i |\gamma(i)| < \infty$ (by bound of autocovariance in proof of T2.3)

- As $l \to \infty$, $E(S_l^2) l\sigma^2 = -2\sum_{k=1}^{\infty} \min(k, l) \gamma(k) = -2\sum_{k=1}^{\infty} k\gamma(k) + o(1) = \theta + o(1)$
 - Keith (and I) usually denote $v_p \stackrel{\text{\tiny def}}{=} \sum_{k=-\infty}^{\infty} |k|^p \gamma(k)$ and $u_p \stackrel{\text{\tiny def}}{=} \sum_{k=-\infty}^{\infty} |k|^p |\gamma(k)|$
- Thus we have $E(V_n v_n \sigma^2) = n\theta + o(n)$

Now we decompose the AMSE in T2.2 into variance and bias²,

$$\left\| \frac{v_n}{v_n} - \sigma^2 \right\|_2^2 = \frac{1}{v_n^2} \left[\|V_n - E(V_n)\|_2^2 + |E(V_n) - v_n \sigma^2|^2 \right]$$

$$= \frac{(4p-2)^2}{c^{\frac{2}{p}}p^4} n^{\frac{2}{p}-4} \left[\frac{p^4 c^{\frac{3}{p}}}{12p-9} n^{4-\frac{3}{p}} \sigma^4 + n^2 \theta^2 + o(n^2) \right] (\text{by } v_n \sim \frac{c^{\frac{1}{p}}p^2}{4p-2} n^{2-\frac{1}{p}}, \text{T2.2 and the result above})$$

$$= \frac{256}{81c^{\frac{4}{3}}} n^{-\frac{8}{3}} \left[\frac{9c^2}{16} \sigma^4 n^2 + \theta^2 n^2 + o(n^2) \right]$$

$$= \left(\frac{16}{9} c^{\frac{2}{3}} + \frac{256}{81} c^{-\frac{4}{3}} \kappa^2 \right) \sigma^4 n^{-\frac{2}{3}} \text{ where } \kappa = \frac{|\theta|}{\sigma^2}$$

Optimal choice of *c* (p.10)

The optimal choice of c should minimize $\frac{16}{9}c^{\frac{2}{3}} + \frac{256}{81}c^{-\frac{4}{3}}\kappa^2$

- Illustration with SymPy
 - from sympy import symbols, diff, solve, simplify, Rational, init_printing
 - init_printing() # for printing Latex in console
 - c, kappa = symbols("c, kappa", real=True, positive=True) # kappa = v1/sigma^2
 - # Coefficent of Bias^2 and variance
 - b2 = Rational(256,81) *c**(-Rational(4,3)) *kappa**2
 - v = Rational(16,9) *c**(Rational(2,3)) # use Rational(p, q) if you want solution in fraction
 - mse = b2 +v
 - o dMse = diff(mse,c)
 - minC = solve(dMse, c) # optimal c
 - # first root minimize after inspection
 - simplify(minC[0])
 - simplify(mse.subs(c, minC[0]))

...: minC = solve(dMse, c) # optimal c ...: # first root minimize after inspection ...: simplify(minC[0]) Out[1]:

4√2*κ*/3

In [2]: simplify(mse.subs(c, minC[0]))
Out[2]:

 $16\sqrt[3]{12}\kappa^{2/3}/9$

Estimate optimal c (p.10-11)

By prime factorization, we can see that output of SymPy matches with

- Optimal AMSE of $\hat{\sigma}_{\Delta SR}^2(n) = \frac{2^{\frac{14}{3}}}{3^{\frac{5}{3}}} \theta^{\frac{2}{3}} \sigma^{\frac{8}{3}} n^{-\frac{2}{3}}$ with optimal $c = \frac{4\sqrt{2}|\theta|}{3\sigma^2} = \frac{4\sqrt{2}}{3}\kappa$
- Literature shows that optimal AMSE of $\hat{\sigma}_{obm}^2(n) = 2^{\frac{2}{3}} 3^{\frac{1}{3}} \theta^{\frac{2}{3}} \sigma^{\frac{8}{3}} n^{-\frac{2}{3}}$
 - With batch size $l_n = \left[\lambda_* n^{\frac{1}{3}}\right]$ and optimal $\lambda_*^3 = \frac{3\theta^2}{2\sigma^4} \Rightarrow \kappa = \sqrt{\frac{2}{3}\lambda_*^3}$
 - Recall that we do not know the optimal functional of block start (same for batch size here)
 - This shows $AMSE[\hat{\sigma}^2_{\Delta SR}(n)] = 1.778AMSE[\hat{\sigma}^2_{obm}(n)]$. Chan and Yau's (2017) TSR and PSR dominate it in MSE sense
- Theorem 4.1 in Bühlmann and Künsch (1999) gives $\frac{\hat{l}_n^3}{n} \sim \frac{1}{n\hat{b}^3} \sim \frac{3\theta^2}{2\sigma^4} = \lambda_*^3 \Rightarrow \lambda_* = \hat{l}_n n^{-\frac{1}{3}}$
 - They gives a procedure to estimate \hat{l}_n via pilot simulation. Hence n is the sample size in pilot simulation here
 - Note that this is asymptotic. Can we have better pilot procedure for small sample?

• Using these relationship, we have
$$\hat{c} = \frac{8}{3\sqrt{3}}\lambda_*^{\frac{3}{2}} = \frac{8}{3\sqrt{3}}\hat{l}_n n^{-\frac{1}{3}}$$

Bühlmann and Künsch's (1999) algorithm (p.10-11)

Let the Tukey-Hanning window $w_{TH}(x) = \frac{1}{2} [1 + \cos(\pi x)] \mathbb{I}(|x| \le 1)$ • Let the splt-cosine window $w_{SC}(x) = \begin{cases} \frac{1}{2} \{1 + \cos[5(x - 0.8)\pi]\}, 0.8 \le |x| \le 1 \\ 1, |x| < 0.8 \\ 0, |x| > 1 \end{cases}$ • 1) Compute $\hat{\gamma}(k) = \frac{1}{n} \sum_{i=1}^{n-|k|} (X_i - \bar{X}_n) (X_{i+|k|} - \bar{X}_n)$ for k = 1 - n, ..., n - 1• 2) Let $b_0 = \frac{1}{n}$. For m = 1, 2, 3, 4, compute $b_m = n^{-\frac{1}{3}} \left[\frac{\sum_{k=1-n}^{n-1} \hat{\gamma}(k)^2}{6\sum_{k=1-n}^{n-1} w_{SC}(kb_{m-1}n^{\frac{4}{21}})k^2 \hat{\gamma}(k)^2} \right]^{\frac{1}{3}}$

• 3) Let
$$\hat{l}_n$$
 be the closest integer of \hat{b}^{-1} , where $\hat{b} = n^{-\frac{1}{3}} \left| \frac{2(\sum_{k=1-n}^{n-1} w_{TH}(kb_4 n^{\overline{21}})\hat{\gamma}(k))}{3(\sum_{k=1-n}^{n-1} w_{SC}(kb_4 n^{\frac{4}{21}})|k|\hat{\gamma}(k))^2} \right|$

Other possible procedures

AR(1) plug-in method

ACVF inspection