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Motivation (p.1)

■ Finite-sample distributions can be impossible to derive in time series

■ Usual tools like CLT and LLN are not tailored for time series

– Simple CLT relies on independence

– Advance CLT imposes condition like 𝛼-mixing, which is hard to verify

■ Some asymptotic tools developed for linear time series before

– What if nonlinear?

– Goal of this survey: general stationary process
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Stationary process

■ Form: 𝑋𝑖 = 𝐻(… , 𝜖𝑖−1, 𝜖𝑖) where 𝜖𝑖, 𝑖 ∈ ℤ are iid random variables

– Basis of Wu’s 2005 PNAS paper

– Avoid the use of strong mixing condition

– Sometimes called nonlinear Wold representation

■ Casual interpretation: 𝜖𝑡 𝑡≤𝑖 “cause” 𝑋𝑖

– 𝑋𝑖 is independent of future innovation 𝜖𝑗 where 𝑗 > 𝑖

– Reason will be argued in next section
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Section 2

REPRESENTATION 
THEORY
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Wold representation (1938) (p.2)

■ Any weakly stationary process can be decomposed into

– A regular process (a moving average sum of white noises)

– And a singular process (a linearly deterministic component)

– Form: 𝑋𝑡 = σ𝑗=0
∞ 𝑏𝑗𝜖𝑡−𝑗 + 𝜂𝑡

■ Also gives causal interpretation

– Stronger in the sense that it is linear

■ However not much insight for asymptotic distribution

– Joint distribution of white noises can be too complicated
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Rosenblatt transformation (1952)

■ Any finite dimensional random vector can be expressed in distribution as functions 

of iid uniforms

– Based on quantile transformation: 𝑋𝑛 =
𝑑

𝑋𝑛−1, 𝐺𝑛 𝑋𝑛−1, 𝑈𝑛

■ Not applicable on stationary ergodic process

– However suggest the usefulness of nonlinear Wold representation

– Stationary: distribution of the random variables

– Ergodic: statistical property can be deduced from sample paths

6



Comparison

Representation Form Requirement Asymptotic

Wold 𝑋𝑡 = σ𝑗=0
∞ 𝑏𝑗𝜖𝑡−𝑗 + 𝜂𝑡 Weakly stationary No

Nonlinear Wold 𝑋𝑡 = 𝐻 … , 𝜖𝑡−1, 𝜖𝑡 Strictly stationary Yes

■ Weakly stationary ⟺ Wold

■ Strictly stationary ⟺ nonlinear Wold?

– Previous example suggest that nonlinear Wold can represent lots of process

– Is there strictly stationary process that cannot be represented?

■ Then we cannot use the asymptotic in this paper  
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DEPENDENCE 
MEASURES

Section 3
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Physical dependence

■ Physical dependence measure: 𝛿𝑝 𝑗 ≝ ‖𝑋𝑗 − 𝑋𝑗
∗‖𝑝 where 𝑗 ≥ 0

– ℒ 𝑝 norm: ‖𝑋‖𝑝 ≝ 𝐸 𝑋 𝑝
1

𝑝

– Shift process: ℱ𝑖 ≝ (… , 𝜖𝑖−1, 𝜖𝑖)

■ A bit like filtration of innovation

– Coupled innovation: 𝜖𝑖
′

𝑖∈ℤ is iid copy of 𝜖𝑖 𝑖∈ℤ

– Coupled 𝑋𝑗: 𝑋𝑗
∗ = 𝐻(𝐹𝑗

∗) where 𝐹𝑗
∗ = (… , 𝜖−1, 𝜖0

′ , 𝜖1, … , 𝜖𝑗−1, 𝜖𝑗)

■ Exchangeable: 𝑋𝑗 , 𝑋𝑗
∗ =

𝑑
𝑋𝑗

∗, 𝑋𝑗

– Idea: measure the causal effect of changing initial input 𝜖0 on output 𝑋𝑗

■ Rubin causality?
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Predictive dependence

■ Predictive dependence measure: 𝜔𝑝 𝑗 ≝ ‖𝑔𝑗 ℱ0 − 𝑔𝑗 ℱ0
∗ ‖𝑝 where 𝑗 ≥ 0

– 𝑔𝑗 ℱ0 ≝ 𝐸 𝑋𝑗 ℱ0

■ Nonlinear analogue of Kolmogorov’s (1941, written in Russian) linear predictor

– Idea: measure the predictive effect of knowing initial input 𝜖0 on output 𝑋𝑗

■ Granger causality?

■ Lemma 1: 𝜃𝑝 𝑖 ≤ 𝜔𝑝 𝑖 ≤ 2𝜃𝑝 𝑖

– 𝜃𝑝 𝑖 ≝ ‖𝒫0𝑋𝑖‖𝑝

– Projection operator: 𝒫𝑗 ⋅≝ 𝐸 ⋅ ℱ𝑗 − 𝐸 ⋅ ℱ𝑗−1 where 𝑗 ∈ ℤ

■ This naturally leads to martingale differences

– Interchangeable use of 𝜔𝑝 𝑖 and 𝜃𝑝 𝑖
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Projection operator

■ Definition: 𝒫𝑗 ⋅≝ 𝐸 ⋅ ℱ𝑗 − 𝐸 ⋅ ℱ𝑗−1 where 𝑗 ∈ ℤ

– Help decompose the predictive effect of knowing 𝜖𝑗 on 𝑋𝑖

– 𝐴 = 𝐸 𝐴 + σ𝑗=−∞
∞ 𝒫𝑗𝐴 = mean effect + contribution of 𝜖𝑗 on predicting 𝐴

– 𝒫𝑖𝒫𝑗𝐴 = ቊ
𝒫𝑗𝐴, 𝑖 = 𝑗

0, 𝑖 ≠ 𝑗

■ result of tower property

– 𝒫𝑗𝑋𝑖 = 0 if 𝑗 > 𝑖

■ future 𝜖𝑗 cannot cause 𝑋𝑖

– 𝑋𝑖 = 𝐸 𝑋𝑖 + σ𝑗=−∞
𝑖 𝒫𝑗𝑋𝑖
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Stability (p.3)

■ Stability: 𝑝-stable if Δ𝑝 ≝ σ𝑗=0
∞ 𝛿𝑝 𝑗 < ∞

– Interpretation: cumulative impact of 𝜖0 on 𝑋𝑖 𝑖≥0 is finite

– Short-range dependence condition

■ Weak stability: weakly 𝑝-stable if Ω𝑝 ≝ σ𝑗=0
∞ 𝜔𝑝 𝑗 < ∞

– Interpretation: cumulative contribution of 𝜖0 in predicting 𝑋𝑖 𝑖≥0 is finite

– Weak stability with 𝑝 = 2 guarantees an invariance principle for the partial 

sum process 𝑆𝑛 = σ𝑖=1
𝑛 𝑋𝑖

■ Invariance principle: functional extension of CLT

■ Why weak? (Wu, 2005): 𝛿𝑝 𝑗 ≥ 𝜔𝑝 𝑗 where 𝑝 ≥ 1, 𝑗 ≥ 0
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Relationship

■ Note that definitions in Wu (2005) are used instead

■ 𝜃𝑝 𝑗 ≤ 𝜔𝑝 𝑗 ≤ min 2𝜃𝑝 𝑗 , 𝛿𝑝 𝑗

■ Δ𝑝 < ∞ ⇒ Θ𝑝 ≤ Ω𝑝 < ∞ (stability implies weak stability)
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Name Definition Sum

Physical dependence 𝛿𝑝 𝑗 ‖𝑋𝑗 − 𝑋𝑗
∗‖𝑝 Δ𝑝 < ∞ ⇒ 𝑝-stable 

Predictive dependence 𝜔𝑝 𝑗 𝐸 𝑋𝑗 ℱ0 − 𝐸 𝑋𝑗 ℱ0
∗

𝑝
Ω𝑝 < ∞ ⇒ weakly 𝑝-stable

Projection 𝜃𝑝 𝑗 𝐸 𝑋𝑗 ℱ0 − 𝐸 𝑋𝑗 ℱ−1 𝑝
Θ𝑝 < ∞ ⇒ weakly 𝑝-stable



Examples (p.4)

■ Linear process: 𝑋𝑡 = σ𝑖=0
∞ 𝑎𝑖𝜖𝑡−𝑖

– Existence can be confirmed with Kolmogorov’s Three Series Theorem

– 𝛿𝑝 𝑛 = ‖𝑎𝑛𝜖0 − 𝑎𝑛𝜖0
′ ‖𝑝 = 𝑎𝑛 × ‖𝜖0 − 𝜖0

′ ‖𝑝 = 𝜔𝑝 𝑛

– Stable if σ𝑖=0
∞ 𝑎𝑖 < ∞

■ ARMA process: 𝑋𝑡 = 𝜖𝑡 + σ𝑗=1
𝑝

𝜙𝑗𝑋𝑡−𝑗 + σ𝑙=1
𝑞

𝜃𝑙𝜖𝑡−𝑙

– Special class of linear process

– 𝑎𝑖 is the coefficient of 
1+σ𝑙=1

𝑞
𝜃𝑙𝑧𝑙

1−σ
𝑗=1
𝑝

𝜙𝑗𝑧𝑗
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Volterra series

■ Volterra expansion: functional extension of Taylor expansion

■ Nonlinear Wold: 𝐻 … , 𝜖𝑛−1, 𝜖𝑛 = σ𝑘=1
∞ σ𝑢1,…,𝑢𝑘=0

∞ 𝑔𝑘 𝑢1, … , 𝑢𝑘 𝜖𝑛−𝑢1
… 𝜖𝑛−𝑢𝑘

– 𝑔𝑘 are called Volterra kernel

– Under the assumptions below, 𝑋𝑛 ∈ ℒ2 and exists

■ 𝜖𝑡 are iid with mean 0 and variance 1

■ 𝑔𝑘 𝑢1, … , 𝑢𝑘 symmetric and = 0 if 𝑢𝑖 = 𝑢𝑗 for some 1 ≤ 𝑖 < 𝑗 ≤ 𝑘

■ σ𝑘=1
∞ σ𝑢1,…,𝑢𝑘=0

∞ 𝑔𝑘
2 𝑢1, … , 𝑢𝑘 < ∞

■ Physical dependence: 𝛿𝑝
2 𝑛 = 2 σ𝑘=1

∞ 𝑘 σ𝑢2,…,𝑢𝑘=0
∞ 𝑔𝑘

2 n, u2, … , 𝑢𝑘

■ Predictive dependence: 𝜔𝑝
2 𝑛 = 2 σ𝑘=1

∞ 𝑘 σ𝑢2,…,𝑢𝑘=𝑛+1
∞ 𝑔𝑘

2 n, u2, … , 𝑢𝑘

– Stable if σ𝑖=1
∞ 𝜔𝑝 𝑖 < ∞
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Section 4

NONLINEAR TIME 
SERIES
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Summary (p.4-7)

■ Nonlinear 𝐴𝑅(𝑝) model: 𝑋𝑛 = 𝐺(𝑋𝑛−1, … , 𝑋𝑛−𝑝; 𝜖𝑛) where 𝑝 ≥ 1 and 𝑛 ∈ ℤ

■ Present sufficient condition for the above to have

– Stationary representation in form of nonlinear Wold

– Geometric-moment contracting (GMC) property

■ Implication of GMC: 𝛿𝑝 𝑛 = 𝑂(𝑟𝑛) for some 𝑟 ∈ (0,1)

– Thus 𝑝-stable?

■ The rest are special cases of the above model

– E.g. Threshold AR, GARCH
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CENTRAL LIMIT 
THEORY

Section 5
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Invariance principle (p.7-8)

■ For simplicity, assume 𝐸 𝑋𝑖 = 0 and 𝐶𝑜𝑣 𝑋0, 𝑋𝑘 = 𝛾𝑘

■ Traditional CLT: 
𝑆𝑛

𝑛
՜
𝑑

𝑁(0, 𝜎2) where 𝑆𝑛 = σ𝑖=1
𝑛 𝑋𝑖

– Problems: autocorrelation, heteroskedasticity, no representation of 𝜎2

■ Invariance principle: 
𝑆𝑛𝑢

𝑛
, 0 ≤ 𝑢 ≤ 1 ՜

𝑑
𝜎𝑊𝑢, 0 ≤ 𝑢 ≤ 1

– 𝑆𝑡 = 𝑆 𝑡 + 𝑡 − 𝑡 𝑋 𝑡 +1 (extend 𝑆𝑛 to a stochastic process)

– 𝑊𝑢 is a standard Brownian motion

– Entails CLT on 𝑆𝑛 if holds
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Weak stability (p.8)
■ If a time series is weakly 𝑝-stable, then Θp ≝ σ𝑖=0

∞ 𝜃𝑝 𝑖 < ∞

– Weakly 𝑝-stable: Ω𝑝 = σ𝑗=0
∞ 𝜔𝑝 𝑗 < ∞

– So this follows from lemma 1 that Θp ≤ Ω𝑝 < ∞

■ Assume 𝐸 𝑋𝑖 = 0 and Θp < ∞, then we have

– Moment inequality: 𝑆𝑛 𝑝 ≤ ൞
𝑝 − 1

1

2𝑛
1

2Θ𝑝 , 𝑝 > 2

𝑝 − 1 −1𝑛
1

𝑝Θ𝑝 , 1 < 𝑝 ≤ 2

■ Help to bound the order of remainder term related to moment of 𝑆𝑛

■ Example: መ𝜃 ത𝑋 = መ𝜃 𝜇 + መ𝜃 ത𝑋 − መ𝜃 𝜇 (potentially easier to deal with መ𝜃 𝜇 )

– If Θ2 < ∞, 
𝑆𝑛𝑢

𝑛
, 0 ≤ 𝑢 ≤ 1 ՜

𝑑
𝜎𝑊𝑢, 0 ≤ 𝑢 ≤ 1

■ Where 𝜎2 = σ𝑖=0
∞ 𝒫0𝑋𝑖

2 = σ𝑘∈ℤ 𝛾𝑘

■ Martingale approximation: Volný (1993) Theorem B and Theorem 6
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Martingale approximation

■ Martingale property: 𝑋𝑡 satisfying 𝐸 𝑋𝑡 ℱ𝑗 = 𝑋𝑗 (best guess of future is present)

■ Martingale difference sequence: 𝐷𝑡 = 𝑋𝑡 − 𝑋𝑡−1 satisfying 𝐸 𝐷𝑡 ℱ𝑡−1 = 0

– Projection 𝒫𝑖−𝑙𝑋𝑖 is MDS by tower property since ℱ𝑖−𝑙 ⊂ ℱ𝑖−1

■ Martingale approximation: 𝑋𝑖 = σ𝑙∈ℤ 𝒫𝑖−𝑙𝑋𝑖 (𝐸 𝑋𝑖 = 0 by assumption)

■ Minkowski inequality: 𝑣 + 𝑤 𝑝 ≤ 𝑣 𝑝 + 𝑤 𝑝

– 𝑆𝑛 𝑝 = σ𝑖=1
𝑛 σ𝑙∈ℤ 𝒫𝑖−𝑙𝑋𝑖 𝑝 ≤ σ𝑙∈ℤ σ𝑖=1

𝑛 𝒫𝑖−𝑙𝑋𝑖 𝑝

■ Burkholder’s inequality (1988): 𝑐𝑝 σ𝑖=1
𝑛 𝐷𝑖

2

𝑝

≤ 𝑋𝑛 𝑝 ≤ 𝐶𝑝 σ𝑖=1
𝑛 𝐷𝑖

2

𝑝

– 𝑋𝑖 is a martingale, 𝐷𝑖 = 𝑋𝑖 − 𝑋𝑖−1 is a MDS

– 𝑐𝑝 < 𝐶𝑝 are positive constants depends on 𝑝 where 1 < 𝑝 < ∞

– Idea: relate maximum of a martingale with its quadratic variation
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Proof of moment inequality

■ Apply Burkholder’s inequality to σ𝑖=1
𝑛 𝒫𝑖−𝑙𝑋𝑖 𝑝

𝑝

– σ𝑖=1
𝑛 𝒫𝑖−𝑙𝑋𝑖 𝑝

𝑝
≤ 𝐶𝑝

′ σ𝑖=1
𝑛 𝒫𝑖−𝑙𝑋𝑖

2
𝑝

𝑝
= 𝐶𝑝

′ 𝐸 σ𝑖=1
𝑛 𝒫𝑖−𝑙𝑋𝑖

2
𝑝

2

– ≤ 𝐶𝑝
′ σ𝑖=1

𝑛 𝐸 𝒫𝑖−𝑙𝑋𝑖
𝑝 = 𝐶𝑝

′ σ𝑖=1
𝑛 𝒫𝑖−𝑙𝑋𝑖 𝑝

𝑝
(by power of sum inequality)

– = 𝐶𝑝
′ 𝑛 𝒫0𝑋𝑙 𝑝

𝑝
(by ℒ 𝑝 stationarity)

■ By summing 𝐶𝑝𝑛
1

p 𝒫0𝑋𝑙 𝑝, we have 𝑆𝑛 𝑝 ≤ 𝑝 − 1 −1𝑛
1

𝑝Θ𝑝, 1 < 𝑝 ≤ 2

– The other case uses result of Rio (2009)

– Tighter bound may have appeared in recent years but Wu’s framework provides 

a uniform way to describe the condition
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Proof of invariance principle

■ Doob's martingale inequality: to be discussed in the next paper
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Section 6

GAUSSIAN 
APPROXIMATION
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Strong invariance principle (p.8-9)

■ Invariance principle does not specify rate of convergence 

■ Komlós–Major–Tusnády approximation (1975, 1976) for iid r.v.

– Assume 𝑋𝑖 ∈ ℒ 𝑝 where 𝑝 > 2, 𝐸 𝑋𝑖 = 0

– On a richer probability space, there exists 𝑋𝑖
′

𝑖∈ℤ =
𝑑

𝑋𝑖 𝑖∈ℤ and 𝑆𝑛
′ = σ𝑖=1

𝑛 𝑋𝑖
′

– We have max
0≤𝑡≤𝑛

|𝑆𝑡
′ − 𝜎𝑊𝑡| = 𝑜𝑎.𝑠. 𝑛

1

𝑝

■ Where 𝜎 = 𝑋𝑖

– Further assume 𝐸 𝑒𝑡 𝑋1 < ∞, we have max
0≤𝑡≤𝑛

|𝑆𝑡
′ − 𝜎𝑊𝑡| = 𝑜𝑎.𝑠. log 𝑛

■ A bit like MGF exists
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KMT approximation under dependence

■ Theorem (Wu, 2007):

– Assume 𝑋𝑖 ∈ ℒ 𝑝 where 2 < 𝑝 ≤ 4 has nonlinear Wold representation

– Assume 𝐸 𝑋𝑖 = 0 and σ𝑖=1
∞ 𝛿𝑝 𝑖 + 𝑖𝜔𝑝 𝑖 < ∞

■ σ𝑖=1
∞ 𝑖𝛿𝑝 𝑖 < ∞ is sufficient

– Then on a richer probability space, there exists 𝑋𝑖
′

𝑖≥0 =
𝑑

𝑋𝑖 𝑖≥0

– We have max
0≤𝑡≤𝑛

|𝑆𝑡
′ − 𝜎𝑊𝑡| = 𝑜𝑎.𝑠. 𝑛

1

𝑝 log 𝑛
1

2
+

1

𝑝 log log 𝑛
2

𝑝

■ Where 𝜎 = σ𝑖=0
∞ 𝒫0𝑋𝑖

■ Theorem (Berkes, Liu & Wu, 2014):

– Under some other mild assumptions, we have 𝑆𝑛
′ − 𝜎𝑊𝑛 = 𝑜𝑎.𝑠. 𝑛

1

𝑝

– Read the AoP paper if you are interested
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SAMPLE 
COVARIANCE 
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Section 7
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CLT with bounded 𝑘

■ Sample autocovariance: ො𝛾𝑘 ≝
1

𝑛
σ𝑖=𝑘+1

𝑛 𝑋𝑖 − ത𝑋 𝑋𝑖−𝑘 − ത𝑋 where 0 ≤ 𝑘 < 𝑛

– If 𝜇 = 0, then ො𝛾𝑘 =
1

𝑛
σ𝑖=𝑘+1

𝑛 𝑋𝑖𝑋𝑖−𝑘

■ Assume 𝐸 𝑋𝑖 = 0, 𝑋𝑖 ∈ ℒ 𝑝 where 2 < 𝑝 ≤ 4 and Δ𝑝 < ∞

– Let 𝑌𝑖 = 𝑋𝑖 , … , 𝑋𝑖−𝑘
𝑇 and Γ𝑘 = 𝛾0, … , 𝛾𝑘

𝑇 where 𝑘 ∈ ℕ is fixed, we have

– Moment inequality: ො𝛾𝑘 − 1 −
𝑘

𝑛
𝛾𝑘 𝑝

2

≤
3𝑝−3

𝑛
Θ𝑝

2 +
4𝑛

2
𝑝−1

𝑝−2
𝑋1 𝑝Δ𝑝

– If 𝑋𝑖 ∈ ℒ4 and Δ4 < ∞, 𝑛 ො𝛾0 − 𝛾0, … , ො𝛾𝑘 − 𝛾𝑘 ՜
𝑑

𝑁 0, 𝐸 𝐷0𝐷0
𝑇

■ Where 𝐷0 = σ𝑖=0
∞ 𝒫0(𝑋𝑖𝑌𝑖) ∈ ℒ2
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Proof of bounded 𝑘 (p.10)

■ Jensen’s inequality: 𝜙 𝐸 𝑋 ≤ 𝐸[𝜙 𝑋 ] where 𝜙(⋅) is convex

– Every ℒ 𝑝 norm is convex by Minkowski inequality

■ Product identity: 𝑎𝑏 − ො𝑎 𝑏 ≡ 𝑎 𝑏 − 𝑏 + 𝑏 𝑎 − ො𝑎

– As we usually have good knowledge of 𝑎 − ො𝑎 and 𝑏 − 𝑏

■ Cauchy–Schwarz inequality: σ𝑖=1
𝑛 𝑎𝑖𝑏𝑖 ≤ σ𝑖=1

𝑛 𝑎𝑖
2

σ𝑖=1
𝑛 𝑏𝑖

2

– Probabilistic version: 𝐸 𝑋𝑌 ≤ 𝐸 𝑋2 𝐸 𝑌2

■ Cramér–Wold device: Ԧ𝑋(𝑛) ՜
𝑑

Ԧ𝑋 ⇔ σ𝑖=1
𝑘 𝑡𝑖𝑋𝑖

(𝑛)
՜
𝑑

σ𝑖=1
𝑘 𝑡𝑖𝑋𝑖 ∀Ԧ𝑡 ∈ ℝ𝑘

– Help establish multivariate convergence using univariate result
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CLT with unbounded 𝑘

■ Asymptotic distribution does not depend on the speed of 𝑘𝑛 ՜ ∞

■ Assume 𝐸 𝑋𝑖 = 0, 𝑘𝑛 ՜ ∞ and Δ𝑝 < ∞

– Let 𝑍𝑖 = 𝑋𝑖 , … , 𝑋𝑖−ℎ+1
𝑇 where ℎ ∈ ℕ is fixed, we have

–
1

𝑛
σ𝑖=1

𝑛 𝑋𝑖𝑍𝑖−𝑘𝑛
− 𝐸 𝑋𝑘𝑛

𝑍0 ՜
𝑑

𝑁 0, Σℎ

■ Where Σℎ has entries 𝜎𝑎𝑏 = σ𝑗∈ℤ 𝛾𝑗+𝑎𝛾𝑗+𝑏 = 𝜎0,𝑎−𝑏 where 1 ≤ 𝑎, 𝑏 ≤ ℎ

– If 
𝑘𝑛

𝑛
՜ 0, 𝑛 ො𝛾𝑘𝑛

, … , ො𝛾𝑘𝑛−ℎ+1
𝑇

− 𝛾𝑘𝑛
, … , 𝛾𝑘𝑛−ℎ+1

𝑇
՜
𝑑

𝑁 0, Σℎ

■ The above results come from Wu (2008) for short-range dependence

– Can be extended to long-range linear process
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Estimation problem of 𝛾𝑘

■ ො𝛾𝑘 is not a good estimator of 𝛾𝑘 when 𝑘 is large

– Example: 𝑘 ՜ ∞ with 
𝑘

𝑛
՜ 0 satisfies 𝑛𝛾𝑘 ՜ 0

– MSE of ො𝛾𝑘: 𝐸 ො𝛾𝑘 − 𝛾𝑘
2 ∼

𝜎00

𝑛

– MSE of 𝛾𝑘 = 0: 𝐸 𝛾𝑘 − 𝛾𝑘
2 = 𝑜

1

𝑛
≪ 𝑂

1

𝑛

■ Little o: 𝑓 𝑥 = 𝑜 𝑔 𝑥 ⇔ lim
𝑥՜∞

𝑓 𝑥

𝑔 𝑥
= 0

■ Shrinkage estimate ො𝛾𝑘𝕀 ෝ𝛾𝑘 ≥𝑐𝑛
with carefully chosen 𝑐𝑛 ՜ 0 can reduce MSE

– Similar to Stein’s phenomenon (discussed last semester)

– Details to be discussed in next section
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Convergence problem of Σ𝑛 (p.11)

■ Operator norm: 𝜌 𝐴 ≝ max
𝑥∈ℝ𝑛: 𝑥 =1

𝐴𝑥

– |𝑥| ≝ σ𝑖=1
𝑛 𝑥𝑖

2

– Hence 𝜌2(𝐴) is the largest eigenvalue of 𝐴𝑇𝐴

■ Previous entry-wise convergence result does not imply matrix convergence of Σ𝑛

– Inconsistency is due to previous estimation problem

– Conjecture (Wu & Pourahmadi, 2009): 𝜌 Σ𝑛 − Σ𝑛 ՜
𝑑

𝐺𝑢𝑚𝑏𝑒𝑙(0,1)

■ With proper centering and scaling

■ Gumbel distribution is usually used in extreme value theory
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Truncation technique

■ Banded covariance matrix estimator: Σ𝑛,𝑙𝑛
= ො𝛾𝑖−𝑗𝕀 𝑖−𝑗 ≤𝑙𝑛 1≤𝑖,𝑗≤𝑛

– Under suitable conditions on banding parameter 𝑙𝑛, Σ𝑛,𝑙𝑛
is consistent

– However Σ𝑛,𝑙𝑛
may not be non-negative definite

■ Tapered version: ෨Σ𝑛,𝑙𝑛
= ො𝛾𝑖−𝑗𝑤

𝑖−𝑗

𝑙𝑛
1≤𝑖,𝑗≤𝑛

= Σ𝑛 ⋆ 𝑊𝑛

– ⋆ is the element-wise product

– 𝑤(⋅) is a lag window function (aka kernel) satisfying some conditions

■ Such that 𝑊𝑛 is non-negative definite

■ Example (Bartlett kernel/triangular window): 𝑤𝐵 𝑢 = max 0,1 − 𝑢

■ Schur Product Theorem: 𝐴 ⋆ 𝐵 is non-negative definite if 𝐴, 𝐵 are non-negative 

definite
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Result of Σ𝑛

■ Theorem (Wu & Pourahmadi, 2009):

– Assume 𝑋𝑖 has nonlinear Wold representation and Θ2 < ∞

– If 𝜎 = σ𝑖=0
∞ 𝒫0𝑋𝑖 > 0, then 𝜌 Σ𝑛 − Σ𝑛 ↛

𝑝
0

■ i.e. inconsistency when long-run variance is non-zero

■ Theorem (Xiao & Wu, 2010):

– Assume 𝑋𝑖 has nonlinear Wold representation and 𝐸 𝑋𝑖 = 0

– Assume 𝑋𝑖 ∈ ℒ 𝑝 where 𝑝 > 2 and σ𝑖=𝑗
∞ 𝛿𝑝 𝑖 = 𝑜

1

log 𝑗
as 𝑗 ՜ ∞

– Assume min
𝜗

𝑓 𝜗 > 0

■ 𝑓 is the spectral density function which will be discussed in next section

– Then ∃𝑐 > 0 𝑠. 𝑡. lim
𝑛՜∞

𝑃 𝑐−1 log 𝑛 ≤ 𝜌 Σ𝑛 − Σ𝑛 ≤ 𝑐 log 𝑛 = 1

■ i.e. 𝜌 Σ𝑛 − Σ𝑛 = 𝑜 log 𝑛 as 𝑛 ՜ ∞

■ These two theorems implies Σ𝑛 usually does not converge
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Result of ෨Σ𝑛,𝑙𝑛

■ Upper bound: assume 𝐸 𝑋𝑖 = 0 and Δ𝑝 < ∞ for 2 < 𝑝 ≤ 4

– Let 𝑏𝑛 = σ𝑘=1
𝑙 1 − 𝑤

𝑘

𝑙
+

𝑘

𝑛
𝑤

𝑘

𝑙
|𝛾𝑘| + σ𝑗=𝑙+1

𝑛 𝛾𝑗

– Then 𝜌 ෨Σ𝑛,𝑙 − Σ𝑛 𝑞
≤ 2𝑏𝑛 + 𝑙 + 1

4 𝑋1 𝑝Δ𝑝

𝑛
1−

1
𝑞 𝑝−2

where 𝑞 =
𝑝

2
, 0 ≤ 𝑙 < 𝑛

■ Note that this bound is non-asymptotic

– Hence if 𝑙 = 𝑙𝑛 ՜ ∞ and 
𝑙𝑛

𝑛
1−

1
𝑞

՜ 0, 𝜌 ෨Σ𝑛,𝑙 − Σ𝑛 𝑞
՜ 0

■ Theorem (Xiao & Wu, 2010): 

– Assume 𝑋𝑖 ∈ ℒ 𝑝 where 𝑝 > 4 and Θ𝑝 𝑚 = 𝑂(𝑚−𝛼) where 𝛼 > 0

– Let 𝑙𝑛 ≍ 𝑛𝜆 where 𝜆 ∈ (0,1) satisfy 𝜆 <
𝑝𝛼

2
and 1 − 2𝛼 𝜆 < 1 −

4

𝑝

– Then 𝜌 ෨Σ𝑛,𝑙 − Σ𝑛 = 𝑂 𝑏𝑛 + 𝑂ℙ 𝑛−
1

2 𝑙𝑛 log 𝑙𝑛

1

2

– Adding additional assumptions gives a lower bound
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Special cases (p.12)

■ Assume 𝑝 = 4 and 𝛾𝑘 = 𝑂(𝜌𝑘) for some 0 < 𝜌 < 1

■ Rectangular window: 𝑤 𝑘 = 1 for 𝑘 ≤ 𝑙

– Choose 𝑙 = 𝑙𝑛 =
log 𝑛

−2 log 𝜌
, then 𝜌 ෨Σ𝑛,𝑙 − Σ𝑛 = 𝑂 𝑛−

1

2 log 𝑛

■ Almost optimal but may not be non-negative definite

■ Bartlett window: 𝑤 𝑘 = 1 −
𝑘

𝑙
for 𝑘 ≤ 𝑙

– Choose 𝑙 ≍ 𝑛
1

4, then 

– 𝜌 ෨Σ𝑛,𝑙 − Σ𝑛 = 𝑂 1 σ𝑘=1
𝑙 1 − 𝑤 𝑘 𝛾𝑘 + 𝑂 𝑙𝑛−

1

2 + 𝜌𝑙 = 𝑂 𝑛−
1

4

■ Parzen window: 1 − 𝑤𝑃 𝑢 = 𝑂(𝑢2)

– Choose 𝑙 ≍ 𝑛
1

6, then

– 𝜌 ෨Σ𝑛,𝑙 − Σ𝑛 = 𝑂 𝑙−2 + 𝑙𝑛−
1

2 + 𝜌𝑙 = 𝑂 𝑛−
1

3
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Application

■ The upper bound can be applied to Wiener-Kolmogorov prediction

– Since 𝛾𝑘 can only be estimated with finite sample in practice

– Probably referring to Wiener filter

– Kalman filter is nonstationary extension of Wiener filter

■ More popular in practice

■ Help establish asymptotic theory of estimates of coefficients in

– Wold decomposition theorem

– Discrete Wiener-Hopf equations

■ A method to solve systems of integral equations
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Frequency domain

■ Time domain: changes of a signal with respect to time

■ Frequency domain: changes of a signal with respect to frequency

– How much of a signal lies within each given band over a range of frequencies

■ Why frequency domain?

– Simplify the mathematical analysis

– Give an intuitive understanding of the qualitative behavior of the system

■ E.g. periodicity, power
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Tools (p.12-13)

■ Periodogram: 𝐼𝑛 𝜙 ≝
𝑆𝑛 𝜙 2

𝑛
∀𝜙 ∈ ℝ

– Discrete Fourier transform (DFT): 𝑆𝑛 𝜙 = σ𝑡=1
𝑛 𝑥𝑡𝑒𝑖𝑡𝜙 where 𝑖 = −1

■ Spectral distribution function: right-continuous, non-decreasing 𝐹 that satisfy

– 𝛾𝑘 = 0

2𝜋
𝑒𝑖𝑘𝜙𝑑𝐹 𝜙 and is bounded on [0,2𝜋]

■ Spectral density function: 𝑓 = 𝐹′ if 𝐹 is absolutely continuous

■ Theorem (Peligrad & Wu, 2010): for regular nonlinear Wold process,

– If σ𝑘∈ℤ 𝛾𝑘 < ∞, then 𝑓 𝜙 =
1

2𝜋
σ𝑘∈ℤ 𝛾𝑘𝑒𝑖𝑘𝜙 =

1

2𝜋
σ𝑘∈ℤ 𝛾𝑘 cos 𝑘𝜙

■ Euler’s formula: 𝑒𝑖𝜙 = cos 𝜙 + 𝑖 sin 𝜙

– Continuity property: if 𝑢𝑝 = σ𝑘=1
∞ 𝑘𝑝 𝛾𝑘 < ∞, then 𝑓 ∈ 𝒞𝑝(ℝ)

■ Larger 𝑝 such that 𝑢𝑝 < ∞ means weaker serial dependence
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Central limit problem of 𝑆𝑛 𝜙
■ Assume 𝑋𝑡 is second order stationary, 𝐸 𝑋𝑡 = 0 and σ𝑘∈ℤ 𝛾𝑘 < ∞

– Then 𝐸 𝐼𝑛 𝜙 = σ𝑘=1−𝑛
𝑛−1 1 −

𝑘

𝑛
𝛾𝑘 cos 𝑘𝜙 ՜ 2𝜋𝑓(𝜙) as 𝑛 ՜ ∞

– Hence 
𝑆𝑛 𝜙 2

2𝜋𝑛
is asymptotically unbiased for 𝑓(𝜙)

■ Note that 𝑆𝑛(𝜙) comes from discrete transform but 𝑓 𝜙 comes from continuous

– However it is inconsistent by the following theorem

■ Theorem: assume 𝐸 𝑋𝑡
2 < ∞

– For almost all 𝜗 ∈ ℝ (Lebesgue), we have 
ℜ
ℑ

𝑆𝑛 𝜗

𝑛
՜
𝑑

𝑁 0, 𝜋𝑓 𝜗 𝐼𝑑2

■ Consequently, 
𝐼𝑛 𝜗

2𝜋𝑓 𝜗
՜
𝑑

𝐸𝑥𝑝 1

■ Proposition: this holds ∀𝜗 ∈ (0, 2𝜋) if σ𝑖=0
∞ 𝒫0𝑋𝑖 − 𝒫0𝑋𝑖+1 < ∞

– A sufficient condition is Θ𝑝 < ∞

– For almost all pairs (𝜗, 𝜑) (Lebesgue), 
𝑆𝑛 𝜗

𝑛
⊥

𝑆𝑛 𝜑

𝑛
asymptotically
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Fast Fourier transform

■ Discrete Fourier transform: 𝑂 𝑛2 time complexity to obtain 𝑆𝑛 𝜗𝑗 , 𝑗 = 1, … , 𝑛

■ Fast Fourier transform: 𝑂 𝑛 log2 𝑛 time complexity to obtain same estimate

– A size-𝑁 (𝑁 = 𝑁1𝑁2) DFT can be expressed as two DFTs with size 𝑁1, 𝑁2

– This is possible by complex root of unity (aka twiddle factors)

– Cooley-Tukey algorithm

■ Faster Fourier transform?

– Lower bound on time complexity of FFT is an open problem

– Some results under sparsity (Hassanieh et. al., 2012)
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Central limit problem of 𝑆𝑛 𝜗𝑗

■ Theorem: assume 𝑋𝑖 is nonlinear Wold, Θ𝑝 < ∞ and min
𝜗

𝑓 𝜗 > 0,

– Let 𝑞 ∈ ℕ, 𝑚 =
𝑛−1

2
and 𝑌𝑘 ∼

𝑖𝑖𝑑
𝑁(0,1) for 1 ≤ 𝑘 ≤ 2𝑞

– Then 
𝑆𝑛 𝜗𝑙𝑗

𝑛𝜋𝑓(𝜗𝑙𝑗

, 1 ≤ 𝑗 ≤ 𝑞 ՜
𝑑

𝑌2𝑗−1 + 𝑖𝑌2𝑗 , 1 ≤ 𝑗 ≤ 𝑞

■ Where 1 ≤ 𝑙1 < ⋯ < 𝑙𝑞 ≤ 𝑚 may depend on 𝑛

■ Consequently, 
𝐼𝑛 𝜗𝑙𝑗

𝑓 𝜗𝑙𝑗

, 1 ≤ 𝑗 ≤ 𝑞 ՜
𝑑

𝐸𝑗 , 1 ≤ 𝑗 ≤ 𝑞 where 𝐸𝑗 ∼
𝑖𝑖𝑑

𝐸𝑥𝑝(1)

– The remaining part discuss the maximum error of approximation (?)

■ Continuous mapping theorem: 𝑋𝑛 ՜
𝑑

𝑋 ⇒ 𝑔 𝑋𝑛 ՜
𝑑

𝑔(𝑋) if 𝑔(⋅) is continuous

– This is only the part used. Check standard reference for full theorem

■ Theorem (Lin & Liu, 2009) states convergence to standard Gumbel
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Estimation problem of 𝑓 𝜃 (p.14)
■ Inconsistency of 𝐼𝑛 𝜗 (though unbiased) proved in last section

■ Lag window estimator: 𝑓𝑛 𝜃 =
1

2𝜋
σ𝑘=1−𝑛

𝑛−1 𝐾
𝑘

𝐵𝑛
ො𝛾𝑘𝑒𝑖𝑘𝜃 where

– Bandwidth 𝐵𝑛 satisfies 𝐵𝑛 ՜ ∞ and 
𝐵𝑛

𝑛
՜ 0

– Window 𝐾 is symmetric, bounded, continuous at 0 and 𝐾 0 = 1

– This estimator is consistent but its limiting distribution is highly nontrivial

■ Theorem (Liu & Wu, 2010): assume 𝐸 𝑋𝑡 = 0, 𝐸 𝑋𝑡
4 < ∞ and Δ4 < ∞

– Let 𝐵𝑛 ՜ ∞ and 𝐵𝑛 = 𝑜(𝑛) as 𝑛 ՜ ∞

– Assume 𝐾 is symmetric, bounded, lim
𝑢՜0

𝐾(𝑢) = 𝐾 0 = 1

– Assume 𝜅 ≝ ∞−

∞
𝐾2 𝑢 𝑑𝑢 < ∞ and 𝐾 is continuous at all but finite points

– Assume sup
0<𝑤≤1

σ
𝑗≥

𝑐

𝑤

𝐾2 𝑗𝑤 ՜ 0 as 𝑐 ՜ ∞

– Then 
𝑛

𝐵𝑛
𝑓𝑛 𝜃 − 𝐸 𝑓𝑛 𝜃 ՜

𝑑
𝑁 0, 1 + 𝕀𝜃

𝜋
∈ℤ

𝑓2 𝜃 𝜅 for 0 ≤ 𝜃 < 2𝜋
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Long-run variance

■ Long-run variance: 2𝜋𝑓 0 =
2𝜋

2𝜋
σ𝑘∈ℤ 𝛾𝑘 cos 0 = σ𝑘∈ℤ 𝛾𝑘 = 𝜎2

– First equality is due to theorem in Peligrad & Wu (2010) (slide p.41)

– Last equality is due to probabilistic representation of 𝜎2 (slide p.20)

■ Put 𝜃 = 0 in the previous CLT, we have
𝑛

𝐵𝑛
𝑓𝑛 0 − 𝑓 0 ՜

𝑑
𝑁 0, 2𝑓2 0 𝜅

– If the bandwidth 𝑏𝑛 = 𝐵𝑛
−1 satisfy

– 2𝜋 𝐸 𝑓𝑛 0 − 𝑓 0 = σ𝑘=1−𝑛
𝑛−1 𝐾 𝑘𝑏𝑛 1 −

𝑘

𝑛
𝛾𝑘 − σ𝑘∈ℤ 𝛾𝑘 = 𝑂 𝑛𝑏𝑛

−
1

2

■ Log transformation can stabilize the variance (ease CI but may lose good property)

–
𝑛

𝐵𝑛
log 𝑓𝑛 0 − log 𝑓 0 ՜

𝑑
𝑁 0, 22
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Recursive estimation

■ Lag window estimator is non-recursive as bandwidth depends on 𝑛

– When bandwidth changes, all blocks need to be updated (time complexity)

– If all blocks need to be updated, we need store all data (space complexity)

■ Recursive estimation is possible by letting bandwidth depends on 𝑖

– When bandwidth changes, only the new block need to be updated

– If bandwidth is increasing in a block, we only need the new data

■ Xiao and Wu (2010) provides algorithm for spectral density

■ Wu (2009), Chan and Yau (2017) provides algorithms for long-run variance
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Kernel regression

■ Model: 𝑌𝑖 = 𝐺 𝑋𝑖 , 𝜂𝑖 , 𝑋𝑖 = … , 𝜖𝑖−1, 𝜖𝑖

– Important example: the autoregressive model 𝑋𝑖+1 = 𝑅 𝑋𝑖 , 𝜖𝑖+1

■ Nadaraya-Watson estimator of 𝑔 𝑥0 = 𝐸(𝑌𝑛|𝑋𝑛 = 𝑥0): 𝑔𝑛 𝑥0 =
𝑇𝑛 𝑥0

𝑓𝑛 𝑥0

– 𝑇𝑛 𝑥 =
1

𝑛
σ𝑡=1

𝑛 𝑌𝑡𝐾𝑏𝑛
(𝑥 − 𝑋𝑡) where 𝐾𝑏𝑛

𝑥 =
1

𝑏𝑛
𝐾

𝑥

𝑏𝑛

■ Kernel 𝐾 is symmetric, bounded on ℝ, has bounded support and ℝ
𝐾 𝑢 𝑑𝑢 = 1

■ Bandwidth 𝑏𝑛 ՜ 0 and 𝑛𝑏𝑛 ՜ ∞

– 𝑓𝑛 𝑥0 =
1

𝑛
σ𝑡=1

𝑛 𝐾𝑏𝑛
𝑥0 = 𝑋𝑡

■ Rosenblatt’s (1956) kernel density estimate
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CLT for 𝑔𝑛 𝑥0

■ 𝑙-step ahead conditional densities: 𝐹𝑙 𝑋𝑖+𝑙 ≤ 𝑥 ℱ𝑖 , 𝑓𝑙 𝑥 ℱ𝑖 =
𝑑

𝑑𝑥
𝐹𝑙 𝑥 ℱ𝑖

■ Theorem (Wu, 2005; Wu, Huang & Huang, 2010)

– Assume ∃𝑐0 < ∞ 𝑠. 𝑡. sup
𝑥∈ℝ

𝑓1 𝑥 ℱ𝑖 ≤ 𝑐0 𝑎. 𝑠. and σ𝑖=1
∞ sup

𝑥
𝒫0𝑓1 𝑥 ℱ𝑖 < ∞

– Assume 𝑏𝑛 ՜ 0, 𝑛𝑏𝑛 ՜ ∞ and let 𝜅 = ℝ
𝐾2 𝑢 𝑑𝑢

– Then 𝑛𝑏𝑛 𝑓𝑛 𝑥0 − 𝐸 𝑓𝑛 𝑥0 ՜
𝑑

𝑁 0, 𝑓 𝑥0 𝜅

– Let 𝑉𝑝 𝑥 = 𝐸 𝐺 𝑥, 𝜂𝑛
𝑝 and 𝜎2 𝑥 = 𝑉2 𝑥 − 𝑔2(𝑥)

– If 𝑓 𝑥0 > 0, 𝑉2, 𝑔 ∈ 𝒞(ℝ) and 𝑉𝑝(𝑥) is bounded on a neighborhood of 𝑥0

– Then 𝑛𝑏𝑛 𝑔𝑛 𝑥0 −
𝐸 𝑇𝑛 𝑥0

𝐸 𝑓𝑛 𝑥0
՜
𝑑

𝑁 0,
𝜎2 𝑥0 𝜅

𝑓 𝑥0

■ Note that 𝐸
𝑇𝑛 𝑥0

𝑓𝑛 𝑥0
does not necessary equal to 

𝐸 𝑇𝑛 𝑥0

𝐸 𝑓𝑛 𝑥0

■ This implies they are probably independent
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Maximum deviation
■ Maximum deviation: Λ𝑛 ≝ sup

𝑙≤𝑥≤𝑢

𝑛𝑏

𝜅𝑓 𝑥
𝑓𝑛 𝑥 − 𝐸 𝑓𝑛 𝑥

■ Theorem (Liu & Wu, 2010)

– Assume 𝑋𝑛 = 𝑎0𝜖𝑛 + 𝑔 … , 𝜖𝑖−2, 𝜖𝑖−1 ∈ ℒ 𝑝 for some 𝑝 > 0 where 𝑎0 ≠ 0

– Assume pdf 𝑓𝜖 of 𝜖1 is positive and sup
𝑥∈ℝ

𝑓𝜖 𝑥 + 𝑓𝜖
′ 𝑥 + 𝑓𝜖

′′ 𝑥 < ∞

– Assume ∃0 < 𝛿2 ≤ 𝛿1 < 1 such that 𝑛−𝛿1 = 𝑂(𝑏𝑛) and 𝑏𝑛 = 𝑂 𝑛−𝛿2

– Let 𝑝′ = min 𝑝, 2 and Θ𝑛 = σ𝑖=0
𝑛 𝛿𝑝′ 𝑖

𝑝′

2

– Assume Ψ𝑛,𝑝′ = 𝑂 𝑛−𝛾 for some 𝛾 >
𝛿1

1−𝛿1

– Assume σ𝑘=−𝑛
∞ Θ𝑛+𝑘 − Θ𝑘

2 = 𝑜 𝑏𝑛
−1𝑛 log 𝑛

– Let the kernel 𝐾 ∈ 𝒞1 −1,1 with 𝐾 ±1 = 0, 𝑙 = 0 and 𝑢 = 1

– Then 𝑃 2 log 𝑏−1 −
1

2Λ𝑛 − 2 log 𝑏−1 −
1

2
log 𝐾3 ≤ 𝑧 ՜ 𝑒−2𝑒−𝑧

∀𝑧 ∈ ℝ

■ Where 𝐾3 =
1−

1
𝐾′ 𝑡

2
𝑑𝑡

4𝜋2 1−
1

𝐾2 𝑡 𝑑𝑡
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Section 12

U-STATISTICS
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𝑈-statistic
■ Weighted 𝑈-statistic: 𝑈𝑛 = σ1≤𝑖,𝑗≤𝑛 𝑤𝑖−𝑗𝐾 𝑋𝑖 , 𝑋𝑗

– Where 𝑤𝑖 = 𝑤−𝑖 are weights and 𝐾 is symmetric measurable function

– Predictive dependence: 𝜃𝑖,𝑗 = 𝒫0𝐾 𝑋𝑖 , 𝑋𝑗

■ Theorem (Hsing and Wu, 2004)

– Assume σ𝑘=0
∞ σ𝑖=0

∞ 𝑤𝑘 𝜃𝑖,𝑖−𝑘 < ∞ (summable weights)

– Then ∃𝜎2 < ∞ such that 
1

𝑛
𝑈𝑛 − 𝐸 𝑈𝑛 ՜

𝑑
𝑁(0, 𝜎2)

– Let 𝑊𝑛 𝑖 = σ𝑗=1
𝑛 𝑤𝑖−𝑗 and 𝑊𝑛 =

1

𝑛
σ𝑖=1

𝑛 𝑊𝑛
2 𝑖

– Assume σ𝑖=1
∞ 𝑤𝑖 = ∞, σ𝑘=0

𝑛 𝑛 − 𝑘 𝑤𝑘
2 = 𝑜 𝑛𝑊𝑛

2 , lim inf
𝑛՜∞

𝑊𝑛

σ𝑖=0
∞ 𝑤𝑖

> 0

– Assume σ𝑙=0
∞ sup

𝑗∈ℤ
𝐾 𝑋0, 𝑋𝑗 − 𝐾 ෨𝑋0, ෨𝑋𝑗 < ∞

■ Where ෨𝑋𝑗 = 𝐸 𝑋𝑗 𝜖𝑗−𝑙, … , 𝜖𝑗

– Then ∃𝜎𝑈
2 < ∞ such that 

1

𝑊𝑛 𝑛
𝑈𝑛 − 𝐸 𝑈𝑛 ՜

𝑑
𝑁(0, 𝜎𝑈

2)
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