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Motivation (p.1)

m Finite-sample distributions can be impossible to derive in time series

m Usual tools like CLT and LLN are not tailored for time series

- Simple CLT relies on independence

— Advance CLT imposes condition like a-mixing, which is hard to verify
m Some asymptotic tools developed for linear time series before

- What if nonlinear?
— @Goal of this survey: general stationary process




Stationary process

m Form: X; = H(...,€;_1,€;) Where €;,1 € Z are iid random variables
— Basis of Wu’s 2005 PNAS paper
— Avoid the use of strong mixing condition
- Sometimes called nonlinear Wold representation

m Casual interpretation: {¢,};<; “cause” X;
- X; is independent of future innovation €; where j > i

- Reason will be argued in nhext section




REPRESENTATION
THEORY



Wold representation (1938) (p.2)

m Any weakly stationary process can be decomposed into
- A regular process (a moving average sum of white noises)
- And a singular process (a linearly deterministic component)
- Form: Xy = ¥ lobj€r—j + 1y
m Also gives causal interpretation
— Stronger in the sense that it is linear

m However not much insight for asymptotic distribution
- Joint distribution of white noises can be too complicated




Rosenblatt transformation (1952)

m Any finite dimensional random vector can be expressed in distribution as functions
of iid uniforms

d
- Based on quantile transformation: X,, = (Xn_l, G,(X,,_1, Un))

m Not applicable on stationary ergodic process
- However suggest the usefulness of nonlinear Wold representation
- Stationary: distribution of the random variables
— Ergodic: statistical property can be deduced from sample paths




Comparison

Representation —

Wold Xt = dj=obj€r—j + 1t Weakly stationary

Nonlinear Wold X, = H(...,et_l,et) Strictly stationary Yes

m Weakly stationary < Wold

m Strictly stationary < nonlinear Wold?
— Previous example suggest that nonlinear Wold can represent lots of process

— Is there strictly stationary process that cannot be represented?
m Then we cannot use the asymptotic in this paper




DEPENDENCE
MEASURES



Physical dependence

m Physical dependence measure: 6,(j) =

|X; — X;'|l, where j =0

1
- LP norm: ||X||, & (E|X|?)P
- Shift process: F; € (..., €;_1, €;)
m A Dit like filtration of innovation
- Coupled innovation: (€;);ez is iid copy of (€;)ez
- Coupled X;: X; = H(F;") where F;" = (..., €_1, €p, €1, -, €j_1, €})
= Exchangeable: (X;,X) = (X7, X;)
- Idea: measure the causal effect of changing initial input €, on output X;
m Rubin causality?




Predictive dependence

m Predictive dependence measure: w,(j) =
- g](TO) dzefE(X]p:O)

m Nonlinear analogue of Kolmogorov’s (1941, written in Russian) linear predictor

- Idea: measure the predictive effect of knowing initial input €, on output X;

19;(Fo) — g;(Fo)ll, where j =0

m Granger causality?
m Lemma 1:6,() < w,(i) < 26,(i)
- 6,(0) E [[PoXillp
- Projection operator: P; - E(- |F;) — E(- |Fj_1) where j € Z
m This naturally leads to martingale differences
- Interchangeable use of w, (i) and 6, (i)
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Projection operator

m Definition: P; -2 E(- |F;) — E(- |Fj_1) where j € Z

Help decompose the predictive effect of knowing €; on X;
A = E(A) + X2 _o PjA = mean effect + contribution of €; on predicting A
Pid, i =]
0, il #]
m result of tower property
PiX;=0ifj>1i
m future €; cannot cause X;

X;=EX) + Yo PiX;

:PL:P]A — {
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Stability (p.3)

m Stability: p-stable if A, = Y52, 6,() < o
- Interpretation: cumulative impact of €, on {X;}>¢ is finite
- Short-range dependence condition
m  Weak stability: weakly p-stable if Q, = 72, w,(j) < o
- Interpretation: cumulative contribution of €, in predicting {X;};>¢ is finite

- Weak stability with p = 2 guarantees an invariance principle for the partial
sum process S, = 2=, X;

m |nvariance principle: functional extension of CLT

m  Why weak? (Wu, 2005): §,,(j) = w,(j) wherep =1, j =0
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Relationship

m Note that definitions in Wu (2005) are used instead

Physical dependence 6, (j) 1X; — X7l A, < o = p-stable
F5) ,

Projection 6, (j) |E(X;|Fo) — E(Xj|.7-"_1)||p 0, < o = weakly p-stable

Predictive dependence w,(j)  ||E(X;|F,) — E(X;

), < oo = weakly p-stable

B 0,() S wp(j) < min[Zé?p(j),6p(i)]
m A, <oo=0, <, <o (stability implies weak stability)
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Examples (p.4)

m Linear process: Xy = ),;2, Qi€_;
- Existence can be confirmed with Kolmogorov’s Three Series Theorem
- 6,(n) = |laneo — anéolly = lanl X |l€0 — ollp = wp(n)
- Stable if Y72 qla;| < oo

m ARMA process: X; = €, + X7_ ¢ X, j + XL 0160

- Special class of linear process

1+Z?=1 QlZl
> :

1—21-:1 (]5]'21

- a; Is the coefficient of
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Volterra series

Volterra expansion: functional extension of Taylor expansion

Nonlinear Wold: H(..., €41, €n) = Xk=1 Zary,.up=0 Gk Uty oo, U ) En—yyy - Enyyy
- gi are called Volterra kernel

— Under the assumptions below, X,, € L? and exists
m ¢, areiid with mean O and variance 1
m gx(uy, ..., uy) symmetricand = 0 ifu; = u;forsome 1 <i<j<k

B D1 Xy, up=0 gie Uy, .y uy) < 0
Physical dependence: §5(n) = 2 X1 k Yo =0 9 (M, Uy, .., Ug)

Predictive dependence: wj(n) = 2 Yp-1 kY, uo=n+1 9@ Uy, o, Up)
- Stable if 3,21 w, (i) < o
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NONLINEAR TIME
SERIES



Summary (p.4-7)

m Nonlinear AR(p) model: X;, = G(Xp—1, ..., Xn—p; €p) Wherep = 1and n € Z

m Present sufficient condition for the above to have
- Stationary representation in form of nonlinear Wold
- Geometric-moment contracting (GMC) property

m Implication of GMC: §,(n) = 0(r™) for some r € (0,1)
— Thus p-stable?

m The rest are special cases of the above model
- E.g. Threshold AR, GARCH
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CENTRAL LIMIT
THEORY



Invariance principle (p.7-8)

m For simplicity, assume E(X;) = 0 and Cov(Xy, Xx) = vk

d
m Traditional CLT: j—%eN(O,az) where S,, = >\, X;

- Problems: autocorrelation, heteroskedasticity, no representation of o

d
m Invariance principle: {% 0<uc< 1} —>{ocW,0 <u <1}

- St = S + (€ — [tDX|¢)+1 (extend S, to a stochastic process)
- W, is a standard Brownian motion
- Entails CLT on §,, if holds

2
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Weak stability (p.8)

m If atime series is weakly p-stable, then 0, £ .72, 6,(i) < o
- Weakly p-stable: Q, = ¥.72q wp(j) < o
- So this follows from lemma 1 that O, < (1), <

m Assume E(X;) = 0 and 0, < o, then we have

( 1 1
(p — 1)2n20,, p > 2
- Moment inequality: ||Sy, ||, < 1 P

1
\(p - 1)"'nr0,, 1<p<2

m Help to bound the order of remainder term related to moment of S,
m Example: (X) = 6(w) + [6(X) — ()] (potentially easier to deal with ()

d
O, < o, {%,03u31}—>{awu,03us1}

m Whereog? = 12720 PoXill* = Xrez Ve
m Martingale approximation: Volny (1993) Theorem B and Theorem 6
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Martingale approximation

m Martingale property: X, satisfying E(X;|F;) = X; (best guess of future is present)
m Martingale difference sequence: D; = X; — X;_, satisfying E(D¢|F;_1) =0
- Projection P;_;X; is MDS by tower property since F;_; € F;_4
m Martingale approximation: X; = ),z Pi_1X; (E(X;) = 0 by assumption)
m  Minkowski inequality: [[v + wl|, < [[v]l, + [Iwll,
= ISnlly = 1Xie1 Xiez PiiXillp < XiezllXiz1 PiiXillp
< IXall, < G

51, 02 5,07
p
- X; is a martingale, D; = X; — X;_1 is a MDS

- ¢p < Cp are positive constants depends on p where 1 < p < oo

m Burkholder’s inequality (1988): ¢,

p

- Idea: relate maximum of a martingale with its quadratic variation




Proof of moment inequality

m Apply Burkholder’s inequality to [ X2, Pi— ;I
n p / n 2 p / n 2 4
- NEE PeiXilly < GollVEL (PeiX)?|[) = GEIZEL (P X2
- S Cp YL EIPioiXi|P = Cp X qllPimiXi |l (by power of sum inequality)
= CpnllPoX I, (by LP stationarity)

1 1
m By summing C,nP||PyX;ll,,, we have [|S,ll, < (p — 1)7*nP0,,1 <p < 2
- The other case uses result of Rio (2009)

— Tighter bound may have appeared in recent years but Wu’s framework provides
a uniform way to describe the condition
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Proof of invariance principle

m Doob's martingale inequality: to be discussed in the next paper
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GAUSSIAN
APPROXIMATION



Strong invariance principle (p.3-9)

m |nvariance principle does not specify rate of convergence

m Komldés-Major-Tusnady approximation (1975, 1976) for iid r.v.
- Assume X; € LP wherep > 2, E(X;) =0

d
- On a richer probability space, there exists {X;}icz = {Xi}iez and Sy, = Yi= 1 X;

1
- We have max |5/ — ocW;| = oa_s_(np)
0<t<n

m Whereo = || X;l|

- Further assume E(et*11) < oo, we have max |S; — oW;| = 0q.5.(logn)
sSt=n

m A bit like MGF exists




KMT approximation under dependence

m Theorem (Wu, 2007):
- Assume X; € LP where 2 < p < 4 has nonlinear Wold representation

- Assume E(X;) = 0and %2,[8,(1) + iw,())] < o

m )2, i6,() < oois sufficient
d
- Then on a richer probability space, there exists {X;}i>o = {Xi}iso

1 1 1 2
- We have max IS — oW,| = 04 [ng(log n)5+5(loglog n)El
<tsn

m Where o = |22 PoX;ll
m Theorem (Berkes, Liu & Wu, 2014):

1
- Under some other mild assumptions, we have S;, — cW,, = oa_s_(np)
- Read the AoP paper if you are interested
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SAMPLE
COVARIANCE
FUNCTION



CLT with bounded k

m Sample autocovariance: 7, & 1 ?=k+1(Xl- —X)(X;_, —X)where0<k<n
- Ifu=0,thenyy =% i= k+1XXl k

m Assume E(X;) =0,X; € LP where2 <p <4and A, <
- LetY; =X, ... X;_i )T and Ty, = (v, ..., ¥i)T where k € N is fixed, we have

E_

3p—3

-  Moment inequality: H?k — (1 — S) 14 HB < 4,
2

d
- IfX; € L*and A, < 00, V\n(Pg — Yo, r Pk — ¥i) = N[0, E(DyDI)]
m Where Dy = X2, Py (X;Y;) € L?
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Proof of bounded k (p.10)

m Jensen’s inequality: ¢[E(X)] < E[¢p(X)] where ¢ (:) is convex
- Every LP norm is convex by Minkowski inequality

m Product identity: ab — @b = a(b — 13) + b(a—a)

- As we usually have good knowledge of a — @ and b — b

m Cauchy-Schwarz inequality: |[Y1-; a;b;| < \/(Z'{Ll a;)" (X, b))’

~  Probabilistic version: |E(XY)| < JE(X?)E(Y?)

- d - d N
m Cramér-Wold device: X 5 X & ¥ t,x™ 53k t.x, vi € R

— Help establish multivariate convergence using univariate result
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CLT with unbounded k

m Asymptotic distribution does not depend on the speed of k;,, —» oo

m Assume E(X;) = 0,k, » c0and A, < o

- LetZ; = (X;,...,Xi_n+1)! where h € N is fixed, we have
1
No
m  Where X has entries o4 = X jezVj+aVj+b = Oo,a—p Where 1 < a,b < h

d
- /f%n - 0, yn [(an» ---»an—h+1)T — (Vi ---»an—h+1)T] - N(0,Zp)

m [he above results come from Wu (2008) for short-range dependence
— Can be extended to long-range linear process

d
®XiZik, — E(Xi, Zo)] = N(O,2)
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Estimation problem of y;

m ;. is not a good estimator of ¥y, when k is large

- Example: k — oo with % — 0 satisfies \'ny, — 0

- MSE of P E[(P — vi)?] ~ 22

n
- MSEof #, = 0: E[(Jx, — V)] = 0 (1) <0 (%)

f(x) — 0

m Littleo: f(x) = o(g(x)) = 11 m
m Shrinkage estimate y I3, |>¢, With carefully chosen ¢, — 0 can reduce MSE

- Similar to Stein’s phenomenon (discussed last semester)
— Details to be discussed in next section
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ESTIMATION OF
COVARIANCE
MATRIX



Convergence problem of ., (p.11)

rator norm: p(4) & A
m Operator norm: p(4) xeé%%nl x|

def n 2
= i=1%i

- |x
- Hence p%(A) is the largest eigenvalue of ATA

m Previous entry-wise convergence result does not imply matrix convergence of ¥,
- Inconsistency is due to previous estimation problem

. d
- Conjecture (Wu & Pourahmadi, 2009): p(£,, — £,,) - Gumbel (0,1)
m With proper centering and scaling
m Gumbel distribution is usually used in extreme value theory
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Truncation technigue

m Banded covariance matrix estimator: in,ln = (?i_j]lli_j|5ln)1<ij<n

— Under suitable conditions on banding parameter L,,, in,ln Is consistent

- However £,,; may not be non-negative definite

m Tapered version: in,ln = (?i_jw ('i_”)) =3 *W,

- * S the element-wise product

- w(-) is a lag window function (aka kernel) satisfying some conditions
m Such that W, is non-negative definite
m Example (Bartlett kernel/triangular window): wg (1) = max(0,1 — |ul)

m Schur Product Theorem: A x B is non-negative definite if A, B are non-negative
definite
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Result of ¥,

m Theorem (Wu & Pourahmadi, 2009):
- Assume X; has nonlinear Wold representation and 0, < oo
— Ifo =152 PoXill > 0, then p(S, — =) + 0
m i.e. inconsistency when long-run variance is non-zero

m Theorem (Xiao & Wu, 2010):
- Assume X; has nonlinear Wold representation and E(X;) = 0

- Assume X; € LP where p > 2 and }.;2; 6,(i) = o (@) asj— oo

- Assume mﬁin f@) >0
m [ is the spectral density function which will be discussed in next section
- Then 3c > 0s.t. lim P[c‘llogn < p(fn — Zn) < clogn] =l

n—>00
m ie p(E,—2%,) =o0(ogn)asn - o

m These two theorems implies Z,, usually does not converge
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Result of X, ;

m Upper bound: assume E(X;) =0and A, <ocofor2<p <4
- Letbn=2§<=1\1—w(f)+5w()\lyk|+z el

- Then [lp(Sn, = Zn)ll, < 2by + (L + 1) 4”Xl”p P

whereq=-,0<[1<n

NS

n' q(p 2)
m Note that this bound is non-asymptotic

- Hence ifl = 1, - o and Sl — n)||q—>0

1

n q
m Theorem (Xiao & Wu, 2010):

- Assume X; € LP where p > 4 and ©,,(m) = 0(m~%) where a > 0

- Letl, = n* where 1 € (0,1) satisfy 2 < 2*and (1 — 2a)1 < 1 —%

~ _1 1
- Then P(Zn,l o Zn) — O(bn) + OIP [Tl z(ln log ln)z]
- Adding additional assumptions gives a lower bound
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Special cases (p.12)

Assume p = 4 and y;, = 0(p") forsome 0 < p < 1

Rectangular window: w(k) = 1 for |k| <[

- Choosel =1, = {

Bartlett window: w(k) =1 —

logn
—-2logp

‘, then ||p(£,.; — Z,)|| = (n 210gn)

m Almost optimal but may not be non-negative definite

1
Choose | = n4, then

lp(En; — 2

1k |for|k|<l

=o)X (1 —w@E)]lyxl + 0 (ln_% + pl) = O(n_%)

Parzen window: 1 — wp(u) = 0(u?)

1
Choose | = ns, then

lp(En; — 2

= O(I‘2 +ln_%+p) 0(n5)
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Application

m The upper bound can be applied to Wiener-Kolmogorov prediction
- Since y; can only be estimated with finite sample in practice
— Probably referring to Wiener filter

- Kalman filter is nonstationary extension of Wiener filter
m More popularin practice

m Help establish asymptotic theory of estimates of coefficients in
-  Wold decomposition theorem

- Discrete Wiener-Hopf equations
m A method to solve systems of integral equations
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PERIODOGRAMS



Frequency domain o

m [ime domain: changes of a signal with respect to time

m Frequency domain: changes of a signal with respect to frequency
- How much of a signal lies within each given band over a range of frequencies

m Why frequency domain?
- Simplify the mathematical analysis
- @Give an intuitive understanding of the qualitative behavior of the system

m E.g. periodicity, power
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Tools (p.12-13)

m Periodogram: L,(¢) & lS"(qb)l

Vo ER
- Discrete Fourier transform (DFT): S, (¢p) = X, x,et? where i = V-1
m Spectral distribution function: right-continuous, non-decreasing F that satisfy

- Yk = f e'’*®dF (¢) and is bounded on [0,2]

m Spectral density function: f = F' if F is absolutely continuous

m Theorem (Peligrad & Wu, 2010): for regular nonlinear Wold process,

1 : 1
- If Yrezlvk| < oo, then f(p) = EZI{EZ Vkelkqb = EZkeZ Yk cos(ke)

m Euler'sformula: e!® = cos ¢ + isin ¢
- Continuity property: if u, = Y-, kP |yl < oo, then f € CP(R)

m larger p such that u, < co means weaker serial dependence
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Central limit problem of S,,(¢)

m Assume X; is second order stationary, E(X;) = 0 and Y. czlvk| < o0

- Then Ell ()] = Sizin (1 =) vk cosCkep) > 2mf (¢) as m — oo

Sn(P)I*
21Tn

- Hence is asymptotically unbiased for f(¢)

m Note that S,,(¢) comes from discrete transform but f(¢) comes from continuous
- However it is inconsistent by the following theorem

m Theorem: assume E(X?) < o

- For almost all Y € R (Lebesgue), we have (1%) ’1/(19) > N[0, f(9)Id,]

1,(9)
s Exp(l)

m Proposition: this holds V9 € (0, 2m) if 2;2 || PoX; — PoXi1ll < o
- A sufficient condition is ©,, < o

L Consequently

n(®) | Sn(9)
Vi T ym

asymptotically
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Fast Fourier transform

m Discrete Fourier transform: 0(n?) time complexity to obtain S, (9),j = 1, ...,n

m Fast Fourier transform: O(n log, n) time complexity to obtain same estimate
- Asize-N (N = N{N,) DFT can be expressed as two DFTs with size Ny, N,
— This is possible by complex root of unity (aka twiddle factors)

— Cooley-Tukey algorithm

m Faster Fourier transform?
- Lower bound on time complexity of FFT is an open problem

- Some results under sparsity (Hassanieh et. al., 2012)
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Central limit problem of S, (¥9;)

m Theorem: assume X; is nonlinear Wold, ©,, < o and rr}9inf(z9) > 0,

- LetqeN,m=|"*and Y, ~ N©01)for1 <k <2q

d
1<j<gq _){YZj—1+iY2j»1 <j<gq}

m Wherel <[, <:-<I[; <mmaydependonn

In(ﬁlj)

d .
m Consequently, {f(ﬁ ) , 1<) < q}e{Ej, 1<j< q} where E; Lo Exp(1)
L

— The remaining part discuss the maximum error of approximation (?)

d d

m Continuous mapping theorem: X,, » X = g(X,) - g(X) if g(+) is continuous
— This is only the part used. Check standard reference for full theorem

m Theorem (Lin & Liu, 2009) states convergence to standard Gumbel
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ESTIMATION OF
SPECTRAL
DENSITIES



Estimation problem of f(6) (p.14)

m Inconsistency of I, (19) (though unbiased) proved in last section
m Lag window estimator: f,,(8) = % nl K (B—kn) 7,.e%? where

- Bandwidth B, satisfies B, — o and =% > 0

- Window K is symmetric, bounded, continuous at O and K(0) = 1

— This estimator is consistent but its limiting distribution is highly nontrivial
m Theorem (Liu & Wu, 2010): assume E(X;) = 0,E(X{) < o and A, < o

- LetB,, > oandB, =o(n)asn — o

- Assume K is symmetric, bounded, lim K(u)=K0) =1

- Assume k & f K?(uw)du < o and K is continuous at all but finite points

- Assume sup Z CKZ(]W) —»0asc—>
o<ws1l =

_ Then({fn(e) fn(e)]}—>Nl0 (1+1s;) F2(O)K]for 0 <6 < 2m
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Long-run variance

m Long-run variance: 2rf (0) = z—zzkez Yk €0s(0) = Ypez Vi = 0°
— First equality is due to theorem in Peligrad & Wu (2010) (slide p.41)
- Last equality is due to probabilistic representation of o? (slide p.20)

m Put 8 = 0inthe previous CLT, we have\/?—n{fn(O) — f(0)} iN[O, 2f%(0)k]

- If the bandwidth b,, = B;; satisfy

- 2m{BL ()] - £O = 52t Kkby) (1= ")y, = Spenvi = 0| (b7
m Log transformation can stabilize the variance (ease Cl but may lose good property)

_ \/Bi llog £,,(0) — log £(0)] N (0, 22)

a7



Recursive estimation

m Lag window estimator is non-recursive as bandwidth depends on n
- When bandwidth changes, all blocks need to be updated (time complexity)
— If all blocks need to be updated, we need store all data (space complexity)

m Recursive estimation is possible by letting bandwidth depends on i
- When bandwidth changes, only the new block need to be updated
— If bandwidth is increasing in a block, we only need the new data

m Xiao and Wu (2010) provides algorithm for spectral density
m Wu (2009), Chan and Yau (2017) provides algorithms for long-run variance
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KERNEL
ESTIMATION



Kernel regression

m Model: Yl = G(Xl',T]l'),Xi = (...,El’_l,El’)
- Important example: the autoregressive model X;,1 = R(X;, €;41)

Tn(x0)
fn(xo0)

m Nadaraya-Watson estimator of g(xy) = E (Y, |X;, = X0): gn(xo) =

1 1 X
- Th(x) = —Xtoq YeKp, (x — X¢) where Kj, (x) = », K (E)

m Kernel K is symmetric, bounded on R, has bounded support and fRK(u)du =1

m Bandwidth b, —» 0 and nb,, -

1
- falxo) = ” =1 Kbn(xo = X¢)

m Rosenblatt’s (1956) kernel density estimate
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CLT for 9n (xO)

m [-step ahead conditional densities: F;(X;,; < x|F;), fi(x|F;) = %Fl(xl}"i)

m Theorem (Wu, 2005; Wu, Huang & Huang, 2010)

- Assume 3¢y < o s.t.sup fi(x|F;) < cg a.s.and Y72 1sup||POf1(x|17-")|| < oo
x€ER

- Assume b, - 0,nb, —» 0 and let k = [ K*(w)du
d
- Then y nb{fn(xo) — E[fn(x0)1} = NIO, f (x0)x]
- LetV,(x) = E|G(x,np)IP and 0%(x) = V5 (x) — g*(x)
- If f(xo) > 0,V,,g € C(R) and V,(x) is bounded on a neighborhood of x

T (Xo) Z(xO)K
- Then { Xo) — = } N [0 ]
gn( 0) E[f,(x0)] f(x0)
T (o) E[Ty(x0)]
m Notethat E [ ] does not necessary equal to ELf(xo)]

m This implies they are probably independent




Maximum deviation

m  Maximum deviation: A,, £ sup

nb

|fn(x) — E[f(x)]]

[=x<u Kf (x)

m Theorem (Liu & Wu, 2010)

Assume X,, = ayge,, + g(...,€;_2,€;_1) € LP forsome p > 0 where ay # 0

Assume pdf f. of €, is positive and sup[f.(x) + |f; ()| + |fZ'(x)]] < o
XER

Assume 30 < 8, < §; < 1 such that n=%1 = 0(b,) and b,, = 0(n‘52)

Let p’ = min(p,2) and 0, = Y1\, 5pr(i)p7

01
1-68,
Assume Y e _ (0,41 — 01)% = o(b; nlogn)

Let the kernel K € C[—1,1] with K(+1) =0,l=0andu =1
1 —Z
Then P [(2 logb™1)zA, — 2logh™ 1 — %logl{g <z|-oe % "VzeR

Assume ¥, . = 0(n"Y) for some y >

SL K @©] at

m Where K3 — = f_ll PETOYT
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U-STATISTICS



U-statistic

m Weighted U-statistic: U,, = Z1<z]<an JK(XL, J)
-  Where w; = w_; are weights and K is symmetric measurable function
- Predictive dependence: 0; ; = ||PoK (X;, X; )|

m Theorem (Hsing and Wu, 2004)
~ Assume Yio 252 olwi|6; i—k < o (summable weights)

d
- Then 302 < oo such that \/iﬁ (U, — E(U,)] > N(0,05%)

. 1 .
- Let W,(i) = Z?=1Wi—j and W, = \/;Zfil an(l)

>0

- Assume Y72, |w;| = o0, ¥ _o(n — kK)wg; = o(nW;), 11m mf2°° lwi]
i=0lWi

- Assume Y2, sup||K(Xo, X;) — K(Xo, X;)|| < o0
jex

m Where )?- = E(X'|€j—l» Ej)

- Then 3o < o such that |U,, — E(U,,)] —>N(O o)

n\/_




