READING GROUP: ASYMPTOTIC THEORY FOR STATIONARY PROCESSES (WU, 2011)

Heman Leung Spring, 2020

Motivation (p.1)

- Finite-sample distributions can be impossible to derive in time series
- Usual tools like CLT and LLN are not tailored for time series
 - Simple CLT relies on independence
 - Advance CLT imposes condition like α -mixing, which is hard to verify
- Some asymptotic tools developed for linear time series before
 - What if nonlinear?
 - Goal of this survey: general stationary process

Stationary process

- Form: $X_i = H(..., \epsilon_{i-1}, \epsilon_i)$ where $\epsilon_i, i \in \mathbb{Z}$ are iid random variables
 - Basis of Wu's 2005 PNAS paper
 - Avoid the use of strong mixing condition
 - Sometimes called nonlinear Wold representation
- Casual interpretation: $\{\epsilon_t\}_{t \le i}$ "cause" X_i
 - X_i is independent of future innovation ϵ_i where j > i
 - Reason will be argued in next section

REPRESENTATION THEORY

Wold representation (1938) (p.2)

- Any weakly stationary process can be decomposed into
 - A regular process (a moving average sum of white noises)
 - And a singular process (a linearly deterministic component)
 - Form: $X_t = \sum_{j=0}^{\infty} b_j \epsilon_{t-j} + \eta_t$
- Also gives causal interpretation
 - Stronger in the sense that it is linear
- However not much insight for asymptotic distribution
 - Joint distribution of white noises can be too complicated

Rosenblatt transformation (1952)

 Any finite dimensional random vector can be expressed in distribution as functions of iid uniforms

- Based on quantile transformation:
$$X_n \stackrel{d}{=} (X_{n-1}, G_n(X_{n-1}, U_n))$$

- Not applicable on stationary ergodic process
 - However suggest the usefulness of nonlinear Wold representation
 - Stationary: distribution of the random variables
 - Ergodic: statistical property can be deduced from sample paths

Comparison

Representation	Form	Requirement	Asymptotic
Wold	$X_t = \sum_{j=0}^{\infty} b_j \epsilon_{t-j} + \eta_t$	Weakly stationary	No
Nonlinear Wold	$X_t = H(\dots, \epsilon_{t-1}, \epsilon_t)$	Strictly stationary	Yes

- Weakly stationary \Leftrightarrow Wold
- Strictly stationary \Leftrightarrow nonlinear Wold?
 - Previous example suggest that nonlinear Wold can represent lots of process
 - Is there strictly stationary process that cannot be represented?
 - Then we cannot use the asymptotic in this paper

DEPENDENCE MEASURES

Physical dependence

- Physical dependence measure: $\delta_p(j) \stackrel{\text{\tiny def}}{=} ||X_j X_j^*||_p$ where $j \ge 0$
 - \mathcal{L}^p norm: $||X||_p \stackrel{\text{\tiny def}}{=} (E|X|^p)^{\overline{p}}$
 - Shift process: $\mathcal{F}_i \stackrel{\text{\tiny def}}{=} (\dots, \epsilon_{i-1}, \epsilon_i)$
 - A bit like filtration of innovation
 - Coupled innovation: $(\epsilon'_i)_{i \in \mathbb{Z}}$ is iid copy of $(\epsilon_i)_{i \in \mathbb{Z}}$
 - Coupled $X_j: X_j^* = H(F_j^*)$ where $F_j^* = (\dots, \epsilon_{-1}, \epsilon'_0, \epsilon_1, \dots, \epsilon_{j-1}, \epsilon_j)$
 - Exchangeable: $(X_j, X_j^*) \stackrel{d}{=} (X_j^*, X_j)$
 - Idea: measure the causal effect of changing initial input ϵ_0 on output X_i
 - Rubin causality?

Predictive dependence

- Predictive dependence measure: $\omega_p(j) \stackrel{\text{\tiny def}}{=} \|g_j(\mathcal{F}_0) g_j(\mathcal{F}_0^*)\|_p$ where $j \ge 0$
 - $g_j(\mathcal{F}_0) \stackrel{\text{\tiny def}}{=} E(X_j \big| \mathcal{F}_0)$
 - Nonlinear analogue of Kolmogorov's (1941, written in Russian) linear predictor
 - Idea: measure the predictive effect of knowing initial input ϵ_0 on output X_i
 - Granger causality?
- Lemma 1: $\theta_p(i) \le \omega_p(i) \le 2\theta_p(i)$
 - $\quad \theta_p(i) \stackrel{\text{\tiny def}}{=} \|\mathcal{P}_0 X_i\|_p$
 - Projection operator: $\mathcal{P}_j \stackrel{\text{\tiny def}}{=} E(\cdot | \mathcal{F}_j) E(\cdot | \mathcal{F}_{j-1})$ where $j \in \mathbb{Z}$
 - This naturally leads to martingale differences
 - Interchangeable use of $\omega_p(i)$ and $\theta_p(i)$

Projection operator

• Definition: $\mathcal{P}_j \stackrel{\text{\tiny def}}{=} E(\cdot | \mathcal{F}_j) - E(\cdot | \mathcal{F}_{j-1})$ where $j \in \mathbb{Z}$

- Help decompose the predictive effect of knowing ϵ_i on X_i
- $A = E(A) + \sum_{j=-\infty}^{\infty} \mathcal{P}_j A$ = mean effect + contribution of ϵ_j on predicting A- $\mathcal{P}_i \mathcal{P}_j A = \begin{cases} \mathcal{P}_j A, \ i = j \\ 0, \ i \neq j \end{cases}$
 - result of tower property

$$- \mathcal{P}_j X_i = 0 \text{ if } j > i$$

• future ϵ_j cannot cause X_i

$$- X_i = E(X_i) + \sum_{j=-\infty}^i \mathcal{P}_j X_i$$

Stability (p.3)

- Stability: *p*-stable if $\Delta_p \stackrel{\text{\tiny def}}{=} \sum_{j=0}^{\infty} \delta_p(j) < \infty$
 - Interpretation: cumulative impact of ϵ_0 on $\{X_i\}_{i\geq 0}$ is finite
 - Short-range dependence condition
- Weak stability: weakly *p*-stable if $\Omega_p \stackrel{\text{\tiny def}}{=} \sum_{j=0}^{\infty} \omega_p(j) < \infty$
 - Interpretation: cumulative contribution of ϵ_0 in predicting $\{X_i\}_{i\geq 0}$ is finite
 - Weak stability with p = 2 guarantees an invariance principle for the partial sum process $S_n = \sum_{i=1}^n X_i$
 - Invariance principle: functional extension of CLT
- Why weak? (Wu, 2005): $\delta_p(j) \ge \omega_p(j)$ where $p \ge 1$, $j \ge 0$

Relationship

■ Note that definitions in Wu (2005) are used instead

Name	Definition	Sum
Physical dependence $\delta_p(j)$	$\ X_j - X_j^*\ _p$	$\Delta_p < \infty \Rightarrow p\text{-stable}$
Predictive dependence $\omega_p(j)$	$\left\ E\left(X_{j} \mathcal{F}_{0}\right)-E\left(X_{j} \mathcal{F}_{0}^{*}\right)\right\ _{p}$	$\Omega_p < \infty \Rightarrow \text{weakly } p\text{-stable}$
Projection $\theta_p(j)$	$\left\ E\left(X_{j} \mathcal{F}_{0}\right)-E\left(X_{j} \mathcal{F}_{-1}\right)\right\ _{p}$	$\Theta_p < \infty \Rightarrow \text{weakly } p\text{-stable}$

- $\theta_p(j) \le \omega_p(j) \le \min[2\theta_p(j), \delta_p(j)]$

Examples (p.4)

• Linear process: $X_t = \sum_{i=0}^{\infty} a_i \epsilon_{t-i}$

- Existence can be confirmed with Kolmogorov's Three Series Theorem

$$- \delta_p(n) = \|a_n \epsilon_0 - a_n \epsilon_0'\|_p = |a_n| \times \|\epsilon_0 - \epsilon_0'\|_p = \omega_p(n)$$

- Stable if $\sum_{i=0}^{\infty} |a_i| < \infty$
- ARMA process: $X_t = \epsilon_t + \sum_{j=1}^p \phi_j X_{t-j} + \sum_{l=1}^q \theta_l \epsilon_{t-l}$
 - Special class of linear process

-
$$a_i$$
 is the coefficient of $\frac{1+\sum_{l=1}^q \theta_l z^l}{1-\sum_{j=1}^p \phi_j z^j}$

Volterra series

- Volterra expansion: functional extension of Taylor expansion
- Nonlinear Wold: $H(\dots, \epsilon_{n-1}, \epsilon_n) = \sum_{k=1}^{\infty} \sum_{u_1,\dots,u_k=0}^{\infty} g_k(u_1, \dots, u_k) \epsilon_{n-u_1} \dots \epsilon_{n-u_k}$
 - g_k are called Volterra kernel
 - Under the assumptions below, $X_n \in \mathcal{L}^2$ and exists
 - ϵ_t are iid with mean 0 and variance 1
 - $g_k(u_1, ..., u_k)$ symmetric and = 0 if $u_i = u_j$ for some $1 \le i < j \le k$
- Physical dependence: $\delta_p^2(n) = 2 \sum_{k=1}^{\infty} k \sum_{u_2,\dots,u_k=0}^{\infty} g_k^2(n, u_2, \dots, u_k)$
- Predictive dependence: $\omega_p^2(n) = 2 \sum_{k=1}^{\infty} k \sum_{u_2,\dots,u_k=n+1}^{\infty} g_k^2(n, u_2, \dots, u_k)$
 - Stable if $\sum_{i=1}^{\infty} \omega_p(i) < \infty$

NONLINEAR TIME SERIES

Summary (p.4-7)

- Nonlinear AR(p) model: $X_n = G(X_{n-1}, ..., X_{n-p}; \epsilon_n)$ where $p \ge 1$ and $n \in \mathbb{Z}$
- Present sufficient condition for the above to have
 - Stationary representation in form of nonlinear Wold
 - Geometric-moment contracting (GMC) property
- Implication of GMC: $\delta_p(n) = O(r^n)$ for some $r \in (0,1)$
 - Thus *p*-stable?
- The rest are special cases of the above model
 - E.g. Threshold AR, GARCH

CENTRAL LIMIT THEORY

Invariance principle (p.7-8)

- For simplicity, assume $E(X_i) = 0$ and $Cov(X_0, X_k) = \gamma_k$
- Traditional CLT: $\frac{S_n}{\sqrt{n}} \xrightarrow{d} N(0, \sigma^2)$ where $S_n = \sum_{i=1}^n X_i$
 - Problems: autocorrelation, heteroskedasticity, no representation of σ^2
- Invariance principle: $\left\{\frac{S_{nu}}{\sqrt{n}}, 0 \le u \le 1\right\} \xrightarrow{d} \{\sigma W_u, 0 \le u \le 1\}$
 - $S_t = S_{\lfloor t \rfloor} + (t \lfloor t \rfloor) X_{\lfloor t \rfloor + 1}$ (extend S_n to a stochastic process)
 - W_u is a standard Brownian motion
 - Entails CLT on S_n if holds

Weak stability (p.8)

- If a time series is weakly p-stable, then $\Theta_p \stackrel{\text{\tiny def}}{=} \sum_{i=0}^{\infty} \theta_p(i) < \infty$
 - Weakly p-stable: $\Omega_p = \sum_{j=0}^{\infty} \omega_p(j) < \infty$
 - So this follows from lemma 1 that $\Theta_{\rm p} \leq \Omega_p < \infty$
- Assume $E(X_i) = 0$ and $\Theta_p < \infty$, then we have

$$- Moment inequality: \|S_n\|_p \leq \begin{cases} (p-1)^{\frac{1}{2}}n^{\frac{1}{2}}\Theta_p, \ p > 2\\ (p-1)^{-1}n^{\frac{1}{p}}\Theta_p, \ 1$$

- Help to bound the order of remainder term related to moment of S_n
- Example: $\hat{\theta}(\bar{X}) = \hat{\theta}(\mu) + [\hat{\theta}(\bar{X}) \hat{\theta}(\mu)]$ (potentially easier to deal with $\hat{\theta}(\mu)$)

- If
$$\Theta_2 < \infty$$
, $\left\{\frac{S_{nu}}{\sqrt{n}}, 0 \le u \le 1\right\} \xrightarrow{d} \{\sigma W_u, 0 \le u \le 1\}$

- Where $\sigma^2 = \|\sum_{i=0}^{\infty} \mathcal{P}_0 X_i\|^2 = \sum_{k \in \mathbb{Z}} \gamma_k$
- Martingale approximation: Volný (1993) Theorem B and Theorem 6

Martingale approximation

- Martingale property: X_t satisfying $E(X_t | \mathcal{F}_j) = X_j$ (best guess of future is present)
- Martingale difference sequence: $D_t = X_t X_{t-1}$ satisfying $E(D_t | \mathcal{F}_{t-1}) = 0$
 - Projection $\mathcal{P}_{i-l}X_i$ is MDS by tower property since $\mathcal{F}_{i-l} \subset \mathcal{F}_{i-1}$
- Martingale approximation: $X_i = \sum_{l \in \mathbb{Z}} \mathcal{P}_{i-l} X_i$ ($E(X_i) = 0$ by assumption)
- Minkowski inequality: $||v + w||_p \le ||v||_p + ||w||_p$

$$- \|S_n\|_p = \|\sum_{i=1}^n \sum_{l \in \mathbb{Z}} \mathcal{P}_{i-l} X_i\|_p \le \sum_{l \in \mathbb{Z}} \|\sum_{i=1}^n \mathcal{P}_{i-l} X_i\|_p$$

- Burkholder's inequality (1988): $c_p \left\| \sqrt{\sum_{i=1}^n D_i^2} \right\|_p \le \|X_n\|_p \le C_p \left\| \sqrt{\sum_{i=1}^n D_i^2} \right\|_p$
 - X_i is a martingale, $D_i = X_i X_{i-1}$ is a MDS
 - $c_p < C_p$ are positive constants depends on p where 1
 - Idea: relate maximum of a martingale with its quadratic variation

Proof of moment inequality

- Apply Burkholder's inequality to $\|\sum_{i=1}^{n} \mathcal{P}_{i-l} X_i\|_p^p$
 - $\left\|\sum_{i=1}^{n} \mathcal{P}_{i-l} X_{i}\right\|_{p}^{p} \le C_{p}' \left\|\sqrt{\sum_{i=1}^{n} (\mathcal{P}_{i-l} X_{i})^{2}}\right\|_{p}^{p} = C_{p}' E \left|\sum_{i=1}^{n} (\mathcal{P}_{i-l} X_{i})^{2}\right|^{\frac{p}{2}}$
 - $\leq C'_p \sum_{i=1}^n E |\mathcal{P}_{i-l} X_i|^p = C'_p \sum_{i=1}^n ||\mathcal{P}_{i-l} X_i||_p^p (by \text{ power of sum inequality})$

$$- = C'_p n \|\mathcal{P}_0 X_l\|_p^p \text{ (by } \mathcal{L}^p \text{ stationarity)}$$

• By summing $C_p n^{\frac{1}{p}} \|\mathcal{P}_0 X_l\|_p$, we have $\|S_n\|_p \le (p-1)^{-1} n^{\frac{1}{p}} \Theta_p$, 1

- The other case uses result of Rio (2009)
- Tighter bound may have appeared in recent years but Wu's framework provides a uniform way to describe the condition

Proof of invariance principle

Doob's martingale inequality: to be discussed in the next paper

GAUSSIAN APPROXIMATION

Strong invariance principle (p.8-9)

- Invariance principle does not specify rate of convergence
- Komlós–Major–Tusnády approximation (1975, 1976) for iid r.v.
 - Assume $X_i \in \mathcal{L}^p$ where p > 2, $E(X_i) = 0$
 - On a richer probability space, there exists $\{X'_i\}_{i\in\mathbb{Z}} \stackrel{d}{=} \{X_i\}_{i\in\mathbb{Z}}$ and $S'_n = \sum_{i=1}^n X'_i$
 - We have $\max_{0 \le t \le n} |S'_t \sigma W_t| = o_{a.s.} (n^{\frac{1}{p}})$
 - Where $\sigma = ||X_i||$
 - Further assume $E(e^{t|X_1|}) < \infty$, we have $\max_{0 \le t \le n} |S'_t \sigma W_t| = o_{a.s.}(\log n)$
 - A bit like MGF exists

KMT approximation under dependence

■ Theorem (Wu, 2007):

- Assume $X_i \in \mathcal{L}^p$ where 2 has nonlinear Wold representation
- Assume $E(X_i) = 0$ and $\sum_{i=1}^{\infty} [\delta_p(i) + i\omega_p(i)] < \infty$

• $\sum_{i=1}^{\infty} i \delta_p(i) < \infty$ is sufficient

- Then on a richer probability space, there exists $\{X'_i\}_{i\geq 0} \stackrel{d}{=} \{X_i\}_{i\geq 0}$
- We have $\max_{0 \le t \le n} |S'_t \sigma W_t| = o_{a.s.} \left[n^{\frac{1}{p}} (\log n)^{\frac{1}{2} + \frac{1}{p}} (\log \log n)^{\frac{2}{p}} \right]$
 - Where $\sigma = \|\sum_{i=0}^{\infty} \mathcal{P}_0 X_i\|$
- Theorem (Berkes, Liu & Wu, 2014):
 - Under some other mild assumptions, we have $S'_n \sigma W_n = o_{a.s.}(n^{\frac{1}{p}})$
 - Read the AoP paper if you are interested

SAMPLE COVARIANCE FUNCTION

CLT with bounded k

• Sample autocovariance: $\hat{\gamma}_k \stackrel{\text{\tiny def}}{=} \frac{1}{n} \sum_{i=k+1}^n (X_i - \bar{X}) (X_{i-k} - \bar{X})$ where $0 \le k < n$

- If
$$\mu = 0$$
, then $\hat{\gamma}_k = \frac{1}{n} \sum_{i=k+1}^n X_i X_{i-k}$

- Assume $E(X_i) = 0, X_i \in \mathcal{L}^p$ where $2 and <math>\Delta_p < \infty$
 - Let $Y_i = (X_i, ..., X_{i-k})^T$ and $\Gamma_k = (\gamma_0, ..., \gamma_k)^T$ where $k \in \mathbb{N}$ is fixed, we have
 - Moment inequality: $\left\| \hat{\gamma}_k \left(1 \frac{k}{n}\right) \gamma_k \right\|_{\frac{p}{2}} \le \frac{3p-3}{n} \Theta_p^2 + \frac{4n^{\frac{2}{p}-1}}{p-2} \|X_1\|_p \Delta_p$

- If
$$X_i \in \mathcal{L}^4$$
 and $\Delta_4 < \infty$, $\sqrt{n}(\hat{\gamma}_0 - \gamma_0, \dots, \hat{\gamma}_k - \gamma_k) \xrightarrow{a} N[0, E(D_0 D_0^T)]$

• Where
$$D_0 = \sum_{i=0}^{\infty} \mathcal{P}_0(X_i Y_i) \in \mathcal{L}^2$$

Proof of bounded k (p.10)

- Jensen's inequality: $\phi[E(X)] \le E[\phi(X)]$ where $\phi(\cdot)$ is convex
 - Every \mathcal{L}^p norm is convex by Minkowski inequality
- Product identity: $ab \hat{a}\hat{b} \equiv a(b \hat{b}) + \hat{b}(a \hat{a})$
 - As we usually have good knowledge of $a \hat{a}$ and $b \hat{b}$
- Cauchy-Schwarz inequality: $|\sum_{i=1}^{n} a_i b_i| \le \sqrt{(\sum_{i=1}^{n} a_i)^2 (\sum_{i=1}^{n} b_i)^2}$
 - Probabilistic version: $|E(XY)| \le \sqrt{E(X^2)E(Y^2)}$
- Cramér-Wold device: $\vec{X}^{(n)} \xrightarrow{d} \vec{X} \Leftrightarrow \sum_{i=1}^{k} t_i X_i^{(n)} \xrightarrow{d} \sum_{i=1}^{k} t_i X_i \quad \forall \vec{t} \in \mathbb{R}^k$
 - Help establish multivariate convergence using univariate result

CLT with unbounded k

- Asymptotic distribution does not depend on the speed of $k_n \rightarrow \infty$
- Assume $E(X_i) = 0, k_n \to \infty$ and $\Delta_p < \infty$
 - Let $Z_i = (X_i, ..., X_{i-h+1})^T$ where $h \in \mathbb{N}$ is fixed, we have
 - $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left[X_i Z_{i-k_n} E(X_{k_n} Z_0) \right] \xrightarrow{d} N(0, \Sigma_h)$
 - Where Σ_h has entries $\sigma_{ab} = \sum_{j \in \mathbb{Z}} \gamma_{j+a} \gamma_{j+b} = \sigma_{0,a-b}$ where $1 \le a, b \le h$

$$- If \frac{k_n}{n} \to 0, \sqrt{n} \left[\left(\hat{\gamma}_{k_n}, \dots, \hat{\gamma}_{k_n - h + 1} \right)^T - \left(\gamma_{k_n}, \dots, \gamma_{k_n - h + 1} \right)^T \right] \xrightarrow{d} N(0, \Sigma_h)$$

- The above results come from Wu (2008) for short-range dependence
 - Can be extended to long-range linear process

Estimation problem of γ_k

- $\hat{\gamma}_k$ is not a good estimator of γ_k when k is large
 - Example: $k \to \infty$ with $\frac{k}{n} \to 0$ satisfies $\sqrt{n}\gamma_k \to 0$

- MSE of
$$\hat{\gamma}_k$$
: $E[(\hat{\gamma}_k - \gamma_k)^2] \sim \frac{\sigma_{00}}{n}$

- MSE of
$$\tilde{\gamma}_k = 0$$
: $E[(\tilde{\gamma}_k - \gamma_k)^2] = o\left(\frac{1}{n}\right) \ll O\left(\frac{1}{n}\right)$

• Little o:
$$f(x) = o(g(x)) \Leftrightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

- Shrinkage estimate $\hat{\gamma}_k \mathbb{I}_{|\hat{\gamma}_k| \ge c_n}$ with carefully chosen $c_n \to 0$ can reduce MSE
 - Similar to Stein's phenomenon (discussed last semester)
 - Details to be discussed in next section

ESTIMATION OF COVARIANCE MATRIX

Convergence problem of $\hat{\Sigma}_n$ (p.11)

• Operator norm: $\rho(A) \stackrel{\text{\tiny def}}{=} \max_{x \in \mathbb{R}^n : |x|=1} |Ax|$

- $|x| \stackrel{\text{\tiny def}}{=} \sqrt{\sum_{i=1}^n x_i^2}$
- Hence $\rho^2(A)$ is the largest eigenvalue of $A^T A$
- Previous entry-wise convergence result does not imply matrix convergence of $\hat{\Sigma}_n$
 - Inconsistency is due to previous estimation problem
 - Conjecture (Wu & Pourahmadi, 2009): $\rho(\hat{\Sigma}_n \Sigma_n) \xrightarrow{d} Gumbel(0,1)$
 - With proper centering and scaling
 - Gumbel distribution is usually used in extreme value theory

Truncation technique

- Banded covariance matrix estimator: $\hat{\Sigma}_{n,l_n} = (\hat{\gamma}_{i-j} \mathbb{I}_{|i-j| \le l_n})_{1 \le i,j \le n}$
 - Under suitable conditions on banding parameter l_n , $\hat{\Sigma}_{n,l_n}$ is consistent
 - However $\hat{\Sigma}_{n,l_n}$ may not be non-negative definite

• Tapered version:
$$\tilde{\Sigma}_{n,l_n} = \left(\hat{\gamma}_{i-j}w\left(\frac{|i-j|}{l_n}\right)\right)_{1 \le i,j \le n} = \hat{\Sigma}_n \star W_n$$

- * is the element-wise product
- $w(\cdot)$ is a lag window function (aka kernel) satisfying some conditions
 - Such that W_n is non-negative definite
 - Example (Bartlett kernel/triangular window): $w_B(u) = \max(0, 1 |u|)$
- Schur Product Theorem: A * B is non-negative definite if A, B are non-negative definite

Result of $\widehat{\Sigma}_n$

■ Theorem (Wu & Pourahmadi, 2009):

- Assume X_i has nonlinear Wold representation and $\Theta_2 < \infty$
- If $\sigma = \|\sum_{i=0}^{\infty} \mathcal{P}_0 X_i\| > 0$, then $\rho(\widehat{\Sigma}_n \Sigma_n) \stackrel{p}{\not\to} 0$
 - i.e. inconsistency when long-run variance is non-zero
- Theorem (Xiao & Wu, 2010):
 - Assume X_i has nonlinear Wold representation and $E(X_i) = 0$
 - Assume $X_i \in \mathcal{L}^p$ where p > 2 and $\sum_{i=j}^{\infty} \delta_p(i) = o\left(\frac{1}{\log j}\right)$ as $j \to \infty$
 - Assume $\min_{\vartheta} f(\vartheta) > 0$
 - f is the spectral density function which will be discussed in next section
 - Then $\exists c > 0 \ s.t. \lim_{n \to \infty} P[c^{-1} \log n \le \rho(\hat{\Sigma}_n \Sigma_n) \le c \log n] = 1$
 - i.e. $\rho(\hat{\Sigma}_n \Sigma_n) = o(\log n) \text{ as } n \to \infty$
- These two theorems implies $\hat{\Sigma}_n$ usually does not converge

Result of $\tilde{\Sigma}_{n,l_n}$

• Upper bound: assume $E(X_i) = 0$ and $\Delta_p < \infty$ for 2

- Let $b_n = \sum_{k=1}^l \left| 1 - w\left(\frac{k}{l}\right) + \frac{k}{n}w\left(\frac{k}{l}\right) \right| |\gamma_k| + \sum_{j=l+1}^n |\gamma_j|$

- Then
$$\left\|\rho\left(\tilde{\Sigma}_{n,l} - \Sigma_n\right)\right\|_q \le 2b_n + (l+1)\frac{4\|X_1\|_p\Delta_p}{n^{1-\frac{1}{q}}(p-2)}$$
 where $q = \frac{p}{2}, 0 \le l < n$

Note that this bound is non-asymptotic

- Hence if
$$l = l_n \to \infty$$
 and $\frac{l_n}{n^{1-\frac{1}{q}}} \to 0$, $\left\|\rho\left(\tilde{\Sigma}_{n,l} - \Sigma_n\right)\right\|_q \to 0$

- Theorem (Xiao & Wu, 2010):
 - Assume $X_i \in \mathcal{L}^p$ where p > 4 and $\Theta_p(m) = O(m^{-\alpha})$ where $\alpha > 0$
 - Let $l_n \approx n^{\lambda}$ where $\lambda \in (0,1)$ satisfy $\lambda < \frac{p\alpha}{2}$ and $(1-2\alpha)\lambda < 1-\frac{4}{p}$
 - Then $\rho(\tilde{\Sigma}_{n,l} \Sigma_n) = O(b_n) + O_{\mathbb{P}}\left[n^{-\frac{1}{2}}(l_n \log l_n)^{\frac{1}{2}}\right]$
 - Adding additional assumptions gives a lower bound

Special cases (p.12)

- Assume p = 4 and $\gamma_k = O(\rho^k)$ for some $0 < \rho < 1$
- Rectangular window: w(k) = 1 for $|k| \le l$

- Choose
$$l = l_n = \left\lfloor \frac{\log n}{-2\log \rho} \right\rfloor$$
, then $\left\| \rho \left(\tilde{\Sigma}_{n,l} - \Sigma_n \right) \right\| = O\left(n^{-\frac{1}{2}}\log n \right)$

Almost optimal but may not be non-negative definite

• Bartlett window:
$$w(k) = 1 - \frac{|k|}{l}$$
 for $|k| \le l$

- Choose
$$l \asymp n^{\frac{1}{4}}$$
, then

- $\|\rho(\tilde{\Sigma}_{n,l} \Sigma_n)\| = O(1)\sum_{k=1}^{l} [1 w(k)]|\gamma_k| + O\left(ln^{-\frac{1}{2}} + \rho^l\right) = O\left(n^{-\frac{1}{4}}\right)$
- Parzen window: $1 w_P(u) = O(u^2)$
 - Choose $l \approx n^{\frac{1}{6}}$, then

$$- \|\rho(\tilde{\Sigma}_{n,l} - \Sigma_n)\| = O\left(l^{-2} + ln^{-\frac{1}{2}} + \rho^l\right) = O\left(n^{-\frac{1}{3}}\right)$$

Application

■ The upper bound can be applied to Wiener-Kolmogorov prediction

- Since γ_k can only be estimated with finite sample in practice
- Probably referring to Wiener filter
- Kalman filter is nonstationary extension of Wiener filter
 - More popular in practice
- Help establish asymptotic theory of estimates of coefficients in
 - Wold decomposition theorem
 - Discrete Wiener-Hopf equations
 - A method to solve systems of integral equations

PERIODOGRAMS

Frequency domain

- Time domain: changes of a signal with respect to time
- Frequency domain: changes of a signal with respect to frequency
 - How much of a signal lies within each given band over a range of frequencies
- Why frequency domain?
 - Simplify the mathematical analysis
 - Give an intuitive understanding of the qualitative behavior of the system
 - E.g. periodicity, power

Tools (p.12-13)

- Periodogram: $I_n(\phi) \stackrel{\text{\tiny def}}{=} \frac{|S_n(\phi)|^2}{n} \ \forall \phi \in \mathbb{R}$
 - Discrete Fourier transform (DFT): $S_n(\phi) = \sum_{t=1}^n x_t e^{it\phi}$ where $i = \sqrt{-1}$
- Spectral distribution function: right-continuous, non-decreasing *F* that satisfy - $\gamma_k = \int_0^{2\pi} e^{ik\phi} dF(\phi)$ and is bounded on $[0,2\pi]$
- Spectral density function: f = F' if F is absolutely continuous
- Theorem (Peligrad & Wu, 2010): for regular nonlinear Wold process,
 - If $\sum_{k \in \mathbb{Z}} |\gamma_k| < \infty$, then $f(\phi) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \gamma_k e^{ik\phi} = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \gamma_k \cos(k\phi)$
 - Euler's formula: $e^{i\phi} = \cos \phi + i \sin \phi$
 - Continuity property: if $u_p = \sum_{k=1}^{\infty} k^p |\gamma_k| < \infty$, then $f \in \mathcal{C}^p(\mathbb{R})$
 - Larger p such that $u_p < \infty$ means weaker serial dependence

Central limit problem of $S_n(\phi)$

• Assume X_t is second order stationary, $E(X_t) = 0$ and $\sum_{k \in \mathbb{Z}} |\gamma_k| < \infty$

- Then
$$E[I_n(\phi)] = \sum_{k=1-n}^{n-1} \left(1 - \frac{|k|}{n}\right) \gamma_k \cos(k\phi) \to 2\pi f(\phi) \text{ as } n \to \infty$$

- Hence $\frac{|S_n(\phi)|^2}{2\pi n}$ is asymptotically unbiased for $f(\phi)$

- Note that $S_n(\phi)$ comes from discrete transform but $f(\phi)$ comes from continuous
- However it is inconsistent by the following theorem
- Theorem: assume $E(X_t^2) < \infty$
 - For almost all $\vartheta \in \mathbb{R}$ (Lebesgue), we have $\binom{\Re}{\Im} \frac{S_n(\vartheta)}{\sqrt{n}} \xrightarrow{d} N[0, \pi f(\vartheta) Id_2]$

• Consequently,
$$\frac{I_n(\vartheta)}{2\pi f(\vartheta)} \xrightarrow{d} Exp(1)$$

- Proposition: this holds $\forall \vartheta \in (0, 2\pi)$ if $\sum_{i=0}^{\infty} ||\mathcal{P}_0 X_i \mathcal{P}_0 X_{i+1}|| < \infty$
 - A sufficient condition is $\Theta_p < \infty$
- For almost all pairs (ϑ, φ) (Lebesgue), $\frac{S_n(\vartheta)}{\sqrt{n}} \perp \frac{S_n(\varphi)}{\sqrt{n}}$ asymptotically

Fast Fourier transform

- Discrete Fourier transform: $O(n^2)$ time complexity to obtain $S_n(\vartheta_j), j = 1, ..., n$
- Fast Fourier transform: $O(n \log_2 n)$ time complexity to obtain same estimate
 - A size-N ($N = N_1 N_2$) DFT can be expressed as two DFTs with size N_1, N_2
 - This is possible by complex root of unity (aka twiddle factors)
 - Cooley-Tukey algorithm
- Faster Fourier transform?
 - Lower bound on time complexity of FFT is an open problem
 - Some results under sparsity (Hassanieh et. al., 2012)

Central limit problem of $S_n(\vartheta_j)$

• Theorem: assume X_i is nonlinear Wold, $\Theta_p < \infty$ and $\min_{\vartheta} f(\vartheta) > 0$,

- Let
$$q \in \mathbb{N}$$
, $m = \left\lfloor \frac{n-1}{2} \right\rfloor$ and $Y_k \stackrel{iid}{\sim} N(0,1)$ for $1 \le k \le 2q$
- Then $\left\{ \frac{S_n(\vartheta_{l_j})}{\sqrt{n\pi f(\vartheta_{l_j})}}, 1 \le j \le q \right\} \stackrel{d}{\rightarrow} \{Y_{2j-1} + iY_{2j}, 1 \le j \le q\}$

• Where
$$1 \le l_1 < \cdots < l_q \le m$$
 may depend on n

• Consequently,
$$\left\{\frac{I_n(\vartheta_{l_j})}{f(\vartheta_{l_j})}, 1 \le j \le q\right\} \xrightarrow{d} \{E_j, 1 \le j \le q\}$$
 where $E_j \xrightarrow{iid} Exp(1)$

- The remaining part discuss the maximum error of approximation (?)

- Continuous mapping theorem: $X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$ if $g(\cdot)$ is continuous
 - This is only the part used. Check standard reference for full theorem
- Theorem (Lin & Liu, 2009) states convergence to standard Gumbel

ESTIMATION OF SPECTRAL DENSITIES

Estimation problem of $f(\theta)$ (p.14)

Inconsistency of $I_n(\vartheta)$ (though unbiased) proved in last section

- Lag window estimator: $f_n(\theta) = \frac{1}{2\pi} \sum_{k=1-n}^{n-1} K\left(\frac{k}{B_n}\right) \hat{\gamma}_k e^{ik\theta}$ where
 - Bandwidth B_n satisfies $B_n \to \infty$ and $\frac{B_n}{n} \to 0$
 - Window K is symmetric, bounded, continuous at 0 and K(0) = 1
 - This estimator is consistent but its limiting distribution is highly nontrivial
- Theorem (Liu & Wu, 2010): assume $E(X_t) = 0$, $E(X_t^4) < \infty$ and $\Delta_4 < \infty$
 - Let $B_n \to \infty$ and $B_n = o(n)$ as $n \to \infty$
 - Assume *K* is symmetric, bounded, $\lim_{u \to 0} K(u) = K(0) = 1$
 - Assume $\kappa \stackrel{\text{\tiny def}}{=} \int_{-\infty}^{\infty} K^2(u) du < \infty$ and K is continuous at all but finite points
 - Assume $\sup_{0 < w \le 1} \sum_{j \ge \frac{c}{w}} K^2(jw) \to 0 \text{ as } c \to \infty$
 - Then $\sqrt{\frac{n}{B_n}} \{f_n(\theta) E[f_n(\theta)]\} \xrightarrow{d} N\left[0, \left(1 + \mathbb{I}_{\frac{\theta}{\pi} \in \mathbb{Z}}\right) f^2(\theta)\kappa\right]$ for $0 \le \theta < 2\pi$

Long-run variance

- Long-run variance: $2\pi f(0) = \frac{2\pi}{2\pi} \sum_{k \in \mathbb{Z}} \gamma_k \cos(0) = \sum_{k \in \mathbb{Z}} \gamma_k = \sigma^2$
 - First equality is due to theorem in Peligrad & Wu (2010) (slide p.41)
 - Last equality is due to probabilistic representation of σ^2 (slide p.20)
- Put $\theta = 0$ in the previous CLT, we have $\sqrt{\frac{n}{B_n}} \{f_n(0) f(0)\} \xrightarrow{d} N[0, 2f^2(0)\kappa]$

- If the bandwidth
$$b_n = B_n^{-1}$$
 satisfy

 $- 2\pi \{ E[f_n(0)] - f(0) \} = \sum_{k=1-n}^{n-1} K(kb_n) \left(1 - \frac{|k|}{n} \right) \gamma_k - \sum_{k \in \mathbb{Z}} \gamma_k = O\left[(nb_n)^{-\frac{1}{2}} \right]$

Log transformation can stabilize the variance (ease CI but may lose good property)

$$- \sqrt{\frac{n}{B_n}} \left[\log f_n(0) - \log f(0) \right] \xrightarrow{d} N(0, 2^2)$$

Recursive estimation

- Lag window estimator is non-recursive as bandwidth depends on n
 - When bandwidth changes, all blocks need to be updated (time complexity)
 - If all blocks need to be updated, we need store all data (space complexity)
- Recursive estimation is possible by letting bandwidth depends on i
 - When bandwidth changes, only the new block need to be updated
 - If bandwidth is increasing in a block, we only need the new data
- Xiao and Wu (2010) provides algorithm for spectral density
- Wu (2009), Chan and Yau (2017) provides algorithms for long-run variance

KERNEL ESTIMATION

Kernel regression

• Model: $Y_i = G(X_i, \eta_i), X_i = (\dots, \epsilon_{i-1}, \epsilon_i)$

- Important example: the autoregressive model $X_{i+1} = R(X_i, \epsilon_{i+1})$

• Nadaraya-Watson estimator of $g(x_0) = E(Y_n | X_n = x_0)$: $g_n(x_0) = \frac{T_n(x_0)}{f_n(x_0)}$

-
$$T_n(x) = \frac{1}{n} \sum_{t=1}^n Y_t K_{b_n}(x - X_t)$$
 where $K_{b_n}(x) = \frac{1}{b_n} K\left(\frac{x}{b_n}\right)$

• Kernel K is symmetric, bounded on \mathbb{R} , has bounded support and $\int_{\mathbb{R}} K(u) du = 1$

■ Bandwidth $b_n \rightarrow 0$ and $nb_n \rightarrow \infty$

$$- f_n(x_0) = \frac{1}{n} \sum_{t=1}^n K_{b_n}(x_0 = X_t)$$

Rosenblatt's (1956) kernel density estimate

CLT for $g_n(x_0)$

- *l*-step ahead conditional densities: $F_l(X_{i+l} \le x | \mathcal{F}_i), f_l(x | \mathcal{F}_i) = \frac{d}{dx} F_l(x | \mathcal{F}_i)$
- Theorem (Wu, 2005; Wu, Huang & Huang, 2010)
 - Assume $\exists c_0 < \infty \ s.t. \sup_{x \in \mathbb{R}} f_1(x|\mathcal{F}_i) \le c_0 \ a.s. and \sum_{i=1}^{\infty} \sup_x \|\mathcal{P}_0 f_1(x|\mathcal{F}_i)\| < \infty$
 - Assume $b_n \to 0$, $nb_n \to \infty$ and let $\kappa = \int_{\mathbb{R}} K^2(u) du$
 - Then $\sqrt{nb_n} \{f_n(x_0) E[f_n(x_0)]\} \xrightarrow{d} N[0, f(x_0)\kappa]$
 - Let $V_p(x) = E |G(x, \eta_n)|^p$ and $\sigma^2(x) = V_2(x) g^2(x)$
 - If $f(x_0) > 0, V_2, g \in \mathcal{C}(\mathbb{R})$ and $V_p(x)$ is bounded on a neighborhood of x_0

- Then
$$\sqrt{nb_n} \left\{ g_n(x_0) - \frac{E[T_n(x_0)]}{E[f_n(x_0)]} \right\} \xrightarrow{d} N\left[0, \frac{\sigma^2(x_0)\kappa}{f(x_0)} \right]$$

• Note that $E\left[\frac{T_n(x_0)}{f_n(x_0)} \right]$ does not necessary equal to $\frac{E[T_n(x_0)]}{E[f_n(x_0)]}$

This implies they are probably independent

Maximum deviation

• Maximum deviation: $\Lambda_n \stackrel{\text{def}}{=} \sup_{l \le x \le u} \sqrt{\frac{nb}{\kappa f(x)}} |f_n(x) - E[f_n(x)]|$

- Theorem (Liu & Wu, 2010)
 - Assume $X_n = a_0 \epsilon_n + g(\dots, \epsilon_{i-2}, \epsilon_{i-1}) \in \mathcal{L}^p$ for some p > 0 where $a_0 \neq 0$
 - Assume pdf f_{ϵ} of ϵ_1 is positive and $\sup_{x \in \mathbb{R}} [f_{\epsilon}(x) + |f_{\epsilon}'(x)| + |f_{\epsilon}''(x)|] < \infty$
 - Assume $\exists 0 < \delta_2 \leq \delta_1 < 1$ such that $n^{-\delta_1} = O(b_n)$ and $b_n = O(n^{-\delta_2})$
 - Let $p' = \min(p, 2)$ and $\Theta_n = \sum_{i=0}^n \delta_{p'}(i)^{\frac{p'}{2}}$
 - Assume $\Psi_{n,p'} = O(n^{-\gamma})$ for some $\gamma > \frac{\delta_1}{1-\delta_1}$
 - Assume $\sum_{k=-n}^{\infty} (\Theta_{n+k} \Theta_k)^2 = o(b_n^{-1}n\log n)$
 - Let the kernel $K \in C^1[-1,1]$ with $K(\pm 1) = 0$, l = 0 and u = 1
 - Then $P\left[(2\log b^{-1})^{-\frac{1}{2}} \Lambda_n 2\log b^{-1} \frac{1}{2}\log K_3 \le z \right] \to e^{-2e^{-z}} \,\forall z \in \mathbb{R}$ • Where $K_3 = \frac{\int_{-1}^1 [K'(t)]^2 dt}{4\pi^2 \int_{-1}^1 K^2(t) dt}$

U-STATISTICS

U-statistic

- Weighted *U*-statistic: $U_n = \sum_{1 \le i,j \le n} w_{i-j} K(X_i, X_j)$
 - Where $w_i = w_{-i}$ are weights and K is symmetric measurable function
 - Predictive dependence: $\theta_{i,j} = \|\mathcal{P}_0 K(X_i, X_j)\|$
- Theorem (Hsing and Wu, 2004)
 - Assume $\sum_{k=0}^{\infty} \sum_{i=0}^{\infty} |w_k| \theta_{i,i-k} < \infty$ (summable weights)
 - Then $\exists \sigma^2 < \infty$ such that $\frac{1}{\sqrt{n}} [U_n E(U_n)] \xrightarrow{d} N(0, \sigma^2)$

- Let
$$W_n(i) = \sum_{j=1}^n w_{i-j}$$
 and $W_n = \sqrt{\frac{1}{n} \sum_{i=1}^n W_n^2(i)}$

- Assume $\sum_{i=1}^{\infty} |w_i| = \infty$, $\sum_{k=0}^{n} (n-k) w_k^2 = o(nW_n^2)$, $\liminf_{n \to \infty} \frac{W_n}{\sum_{i=0}^{\infty} |w_i|} > 0$
- Assume $\sum_{l=0}^{\infty} \sup_{j \in \mathbb{Z}} \left\| K(X_0, X_j) K(\tilde{X}_0, \tilde{X}_j) \right\| < \infty$
 - Where $\tilde{X}_j = E(X_j | \epsilon_{j-l}, ..., \epsilon_j)$
- Then $\exists \sigma_U^2 < \infty$ such that $\frac{1}{W_n \sqrt{n}} [U_n E(U_n)] \xrightarrow{d} N(0, \sigma_U^2)$