READING GROUP: ASYMPTOTIC THEORY FOR STATIONARY PROCESSES
 (WU, 2011)

Motivation (p.1)

- Finite-sample distributions can be impossible to derive in time series
- Usual tools like CLT and LLN are not tailored for time series
- Simple CLT relies on independence
- Advance CLT imposes condition like α-mixing, which is hard to verify
- Some asymptotic tools developed for linear time series before
- What if nonlinear?
- Goal of this survey: general stationary process

Stationary process

■ Form: $X_{i}=H\left(\ldots, \epsilon_{i-1}, \epsilon_{i}\right)$ where $\epsilon_{i}, i \in \mathbb{Z}$ are iid random variables

- Basis of Wu's 2005 PNAS paper
- Avoid the use of strong mixing condition
- Sometimes called nonlinear Wold representation
- Casual interpretation: $\left\{\epsilon_{t}\right\}_{t \leq i}$ "cause" X_{i}
- $\quad X_{i}$ is independent of future innovation ϵ_{j} where $j>i$
- Reason will be argued in next section

REPRESENTATION THEORY

Section 2

Wold representation (1938) (p.2)

■ Any weakly stationary process can be decomposed into

- A regular process (a moving average sum of white noises)
- And a singular process (a linearly deterministic component)
- Form: $X_{t}=\sum_{j=0}^{\infty} b_{j} \epsilon_{t-j}+\eta_{t}$
- Also gives causal interpretation
- Stronger in the sense that it is linear
- However not much insight for asymptotic distribution
- Joint distribution of white noises can be too complicated

Rosenblatt transformation (1952)

- Any finite dimensional random vector can be expressed in distribution as functions of iid uniforms
- Based on quantile transformation: $X_{n} \stackrel{d}{=}\left(X_{n-1}, G_{n}\left(X_{n-1}, U_{n}\right)\right)$
- Not applicable on stationary ergodic process
- However suggest the usefulness of nonlinear Wold representation
- Stationary: distribution of the random variables
- Ergodic: statistical property can be deduced from sample paths

Comparison

Representation	Form	Requirement	Asymptotic
Wold	$X_{t}=\sum_{j=0}^{\infty} b_{j} \epsilon_{t-j}+\eta_{t}$	Weakly stationary	No
Nonlinear Wold	$X_{t}=H\left(\ldots, \epsilon_{t-1}, \epsilon_{t}\right)$	Strictly stationary	Yes

■ Weakly stationary \Leftrightarrow Wold

- Strictly stationary \Leftrightarrow nonlinear Wold?
- Previous example suggest that nonlinear Wold can represent lots of process
- Is there strictly stationary process that cannot be represented?
- Then we cannot use the asymptotic in this paper

DEPENDENCE MEASURES

Section 3

Physical dependence

■ Physical dependence measure: $\delta_{p}(j) \stackrel{\text { def }}{=}\left\|X_{j}-X_{j}^{*}\right\|_{p}$ where $j \geq 0$

- \mathcal{L}^{p} norm: $\|X\|_{p} \stackrel{\text { def }}{=}\left(E|X|^{p}\right)^{\frac{1}{p}}$
- Shift process: $\mathcal{F}_{i} \stackrel{\text { def }}{=}\left(\ldots, \epsilon_{i-1}, \epsilon_{i}\right)$
- A bit like filtration of innovation
- Coupled innovation: $\left(\epsilon_{i}^{\prime}\right)_{i \in \mathbb{Z}}$ is iid copy of $\left(\epsilon_{i}\right)_{i \in \mathbb{Z}}$
- Coupled $X_{j}: X_{j}^{*}=H\left(F_{j}^{*}\right)$ where $F_{j}^{*}=\left(\ldots, \epsilon_{-1}, \epsilon_{0}^{\prime}, \epsilon_{1}, \ldots, \epsilon_{j-1}, \epsilon_{j}\right)$
- Exchangeable: $\left(X_{j}, X_{j}^{*}\right) \stackrel{d}{=}\left(X_{j}^{*}, X_{j}\right)$
- Idea: measure the causal effect of changing initial input ϵ_{0} on output X_{j}
- Rubin causality?

Predictive dependence

■ Predictive dependence measure: $\omega_{p}(j) \stackrel{\text { def }}{=}\left\|g_{j}\left(\mathcal{F}_{0}\right)-g_{j}\left(\mathcal{F}_{0}^{*}\right)\right\|_{p}$ where $j \geq 0$

- $g_{j}\left(\mathcal{F}_{0}\right) \stackrel{\text { def }}{=} E\left(X_{j} \mid \mathcal{F}_{0}\right)$
- Nonlinear analogue of Kolmogorov's (1941, written in Russian) linear predictor
- Idea: measure the predictive effect of knowing initial input ϵ_{0} on output X_{j}
- Granger causality?
- Lemma 1: $\theta_{p}(i) \leq \omega_{p}(i) \leq 2 \theta_{p}(i)$
- $\theta_{p}(i) \stackrel{\text { def }}{=}\left\|\mathcal{P}_{0} X_{i}\right\|_{p}$
- Projection operator: $\mathcal{P}_{j} \cdot \stackrel{\text { def }}{=} E\left(\cdot \mid \mathcal{F}_{j}\right)-E\left(\cdot \mid \mathcal{F}_{j-1}\right)$ where $j \in \mathbb{Z}$
- This naturally leads to martingale differences
- Interchangeable use of $\omega_{p}(i)$ and $\theta_{p}(i)$

Projection operator

■ Definition: $\mathcal{P}_{j} \cdot \stackrel{\text { def }}{=} E\left(\cdot \mid \mathcal{F}_{j}\right)-E\left(\cdot \mid \mathcal{F}_{j-1}\right)$ where $j \in \mathbb{Z}$

- Help decompose the predictive effect of knowing ϵ_{j} on X_{i}
- $A=E(A)+\sum_{j=-\infty}^{\infty} \mathcal{P}_{j} A=$ mean effect + contribution of ϵ_{j} on predicting A
$-\quad \mathcal{P}_{i} \mathcal{P}_{j} A=\left\{\begin{aligned} \mathcal{P}_{j} A, & i=j \\ 0, & i \neq j\end{aligned}\right.$
- result of tower property
- $\mathcal{P}_{j} X_{i}=0$ if $j>i$
- future ϵ_{j} cannot cause X_{i}
- $\quad X_{i}=E\left(X_{i}\right)+\sum_{j=-\infty}^{i} \mathcal{P}_{j} X_{i}$

Stability (p.3)

- Stability: p-stable if $\Delta_{p} \stackrel{\text { def }}{=} \sum_{j=0}^{\infty} \delta_{p}(j)<\infty$
- Interpretation: cumulative impact of ϵ_{0} on $\left\{X_{i}\right\}_{i \geq 0}$ is finite
- Short-range dependence condition
- Weak stability: weakly p-stable if $\Omega_{p} \stackrel{\text { def }}{=} \sum_{j=0}^{\infty} \omega_{p}(j)<\infty$
- Interpretation: cumulative contribution of ϵ_{0} in predicting $\left\{X_{i}\right\}_{i \geq 0}$ is finite
- Weak stability with $p=2$ guarantees an invariance principle for the partial sum process $S_{n}=\sum_{i=1}^{n} X_{i}$
- Invariance principle: functional extension of CLT

■ Why weak? (Wu, 2005): $\delta_{p}(j) \geq \omega_{p}(j)$ where $p \geq 1, j \geq 0$

Relationship

- Note that definitions in Wu (2005) are used instead

Name	Definition	Sum		
Physical dependence $\delta_{p}(j)$	$\left\\|X_{j}-X_{j}^{*}\right\\|_{p}$	$\Delta_{p}<\infty \Rightarrow p$-stable		
Predictive dependence $\omega_{p}(j)$	$\left\\|E\left(X_{j} \mid \mathcal{F}_{0}\right)-E\left(X_{j} \mid \mathcal{F}_{0}^{*}\right)\right\\|_{p}$	$\Omega_{p}<\infty \Rightarrow$ weakly p-stable		
Projection $\theta_{p}(j)$	$\left\\|E\left(X_{j} \mid \mathcal{F}_{0}\right)-E\left(X_{j} \mid \mathcal{F}_{-1}\right)\right\\|_{p}$	$\Theta_{p}<\infty \Rightarrow$ weakly p-stable		

- $\theta_{p}(j) \leq \omega_{p}(j) \leq \min \left[2 \theta_{p}(j), \delta_{p}(j)\right]$
- $\Delta_{p}<\infty \Rightarrow \Theta_{p} \leq \Omega_{p}<\infty$ (stability implies weak stability)

Examples (p.4)

■ Linear process: $X_{t}=\sum_{i=0}^{\infty} a_{i} \epsilon_{t-i}$

- Existence can be confirmed with Kolmogorov's Three Series Theorem
- $\delta_{p}(n)=\left\|a_{n} \epsilon_{0}-a_{n} \epsilon_{0}^{\prime}\right\|_{p}=\left|a_{n}\right| \times\left\|\epsilon_{0}-\epsilon_{0}^{\prime}\right\|_{p}=\omega_{p}(n)$
- Stable if $\sum_{i=0}^{\infty}\left|a_{i}\right|<\infty$
- ARMA process: $X_{t}=\epsilon_{t}+\sum_{j=1}^{p} \phi_{j} X_{t-j}+\sum_{l=1}^{q} \theta_{l} \epsilon_{t-l}$
- Special class of linear process
- a_{i} is the coefficient of $\frac{1+\sum_{l=1}^{q} \theta_{l} z^{l}}{1-\sum_{j=1}^{p} \phi_{j} z^{j}}$

Volterra series

- Volterra expansion: functional extension of Taylor expansion
- Nonlinear Wold: $H\left(\ldots, \epsilon_{n-1}, \epsilon_{n}\right)=\sum_{k=1}^{\infty} \sum_{u_{1}, \ldots, u_{k}=0}^{\infty} g_{k}\left(u_{1}, \ldots, u_{k}\right) \epsilon_{n-u_{1}} \ldots \epsilon_{n-u_{k}}$
- g_{k} are called Volterra kernel
- Under the assumptions below, $X_{n} \in \mathcal{L}^{2}$ and exists
- ϵ_{t} are iid with mean 0 and variance 1
- $g_{k}\left(u_{1}, \ldots, u_{k}\right)$ symmetric and $=0$ if $u_{i}=u_{j}$ for some $1 \leq i<j \leq k$
- $\sum_{k=1}^{\infty} \sum_{u_{1}, \ldots, u_{k}=0}^{\infty} g_{k}^{2}\left(u_{1}, \ldots, u_{k}\right)<\infty$
- Physical dependence: $\delta_{p}^{2}(n)=2 \sum_{k=1}^{\infty} k \sum_{u_{2}, \ldots, u_{k}=0}^{\infty} g_{k}^{2}\left(\mathrm{n}, \mathrm{u}_{2}, \ldots, u_{k}\right)$
- Predictive dependence: $\omega_{p}^{2}(n)=2 \sum_{k=1}^{\infty} k \sum_{u_{2}, \ldots, u_{k}=n+1}^{\infty} g_{k}^{2}\left(\mathrm{n}, \mathrm{u}_{2}, \ldots, u_{k}\right)$
- Stable if $\sum_{i=1}^{\infty} \omega_{p}(i)<\infty$

NONLINEAR TIME SERIES

Section 4

Summary (p.4-7)

- Nonlinear $A R(p)$ model: $X_{n}=G\left(X_{n-1}, \ldots, X_{n-p} ; \epsilon_{n}\right)$ where $p \geq 1$ and $n \in \mathbb{Z}$
- Present sufficient condition for the above to have
- Stationary representation in form of nonlinear Wold
- Geometric-moment contracting (GMC) property
- Implication of GMC: $\delta_{p}(n)=O\left(r^{n}\right)$ for some $r \in(0,1)$
- Thus p-stable?
- The rest are special cases of the above model
- E.g. Threshold AR, GARCH

CENTRAL LIMIT THEORY

Section 5

Invariance principle (p.7-8)

- For simplicity, assume $E\left(X_{i}\right)=0$ and $\operatorname{Cov}\left(X_{0}, X_{k}\right)=\gamma_{k}$
- Traditional CLT: $\frac{s_{n}}{\sqrt{n}} \xrightarrow{d} N\left(0, \sigma^{2}\right)$ where $S_{n}=\sum_{i=1}^{n} X_{i}$
- Problems: autocorrelation, heteroskedasticity, no representation of σ^{2}
- Invariance principle: $\left\{\frac{S_{n u}}{\sqrt{n}}, 0 \leq u \leq 1\right\} \xrightarrow{d}\left\{\sigma W_{u}, 0 \leq u \leq 1\right\}$
- $S_{t}=S_{\lfloor t\rfloor}+(t-\lfloor t\rfloor) X_{\lfloor t\rfloor+1}$ (extend S_{n} to a stochastic process)
- W_{u} is a standard Brownian motion
- Entails CLT on S_{n} if holds

Weak stability (p.8)

- If a time series is weakly p-stable, then $\Theta_{\mathrm{p}} \stackrel{\text { def }}{=} \sum_{i=0}^{\infty} \theta_{p}(i)<\infty$
- Weakly p-stable: $\Omega_{p}=\sum_{j=0}^{\infty} \omega_{p}(j)<\infty$
- So this follows from lemma 1 that $\Theta_{p} \leq \Omega_{p}<\infty$
- Assume $E\left(X_{i}\right)=0$ and $\Theta_{\mathrm{p}}<\infty$, then we have
- Moment inequality: $\left\|S_{n}\right\|_{p} \leq\left\{\begin{array}{c}(p-1)^{\frac{1}{2}} n^{\frac{1}{2}} \Theta_{p}, p>2 \\ (p-1)^{-1} n^{\frac{1}{p}} \Theta_{p}, 1<p \leq 2\end{array}\right.$
- Help to bound the order of remainder term related to moment of S_{n}
- Example: $\hat{\theta}(\bar{X})=\hat{\theta}(\mu)+[\hat{\theta}(\bar{X})-\hat{\theta}(\mu)]$ (potentially easier to deal with $\hat{\theta}(\mu)$)
- If $\Theta_{2}<\infty,\left\{\frac{s_{n u}}{\sqrt{n}}, 0 \leq u \leq 1\right\} \xrightarrow{d}\left\{\sigma W_{u}, 0 \leq u \leq 1\right\}$
- Where $\sigma^{2}=\left\|\sum_{i=0}^{\infty} \mathcal{P}_{0} X_{i}\right\|^{2}=\sum_{k \in \mathbb{Z}} \gamma_{k}$
- Martingale approximation: Volný (1993) Theorem B and Theorem 6

Martingale approximation

- Martingale property: X_{t} satisfying $E\left(X_{t} \mid \mathcal{F}_{j}\right)=X_{j}$ (best guess of future is present)
- Martingale difference sequence: $D_{t}=X_{t}-X_{t-1}$ satisfying $E\left(D_{t} \mid \mathcal{F}_{t-1}\right)=0$
- Projection $\mathcal{P}_{i-l} X_{i}$ is MDS by tower property since $\mathcal{F}_{i-l} \subset \mathcal{F}_{i-1}$
- Martingale approximation: $X_{i}=\sum_{l \in \mathbb{Z}} \mathcal{P}_{i-l} X_{i}\left(E\left(X_{i}\right)=0\right.$ by assumption)
- Minkowski inequality: $\|v+w\|_{p} \leq\|v\|_{p}+\|w\|_{p}$
- $\left\|S_{n}\right\|_{p}=\left\|\sum_{i=1}^{n} \sum_{l \in \mathbb{Z}} \mathcal{P}_{i-l} X_{i}\right\|_{p} \leq \sum_{l \in \mathbb{Z}}\left\|\sum_{i=1}^{n} \mathcal{P}_{i-l} X_{i}\right\|_{p}$
- Burkholder's inequality (1988): $c_{p}\left\|\sqrt{\sum_{i=1}^{n} D_{i}^{2}}\right\|_{p} \leq\left\|X_{n}\right\|_{p} \leq C_{p}\left\|\sqrt{\sum_{i=1}^{n} D_{i}^{2}}\right\|_{p}$
- X_{i} is a martingale, $D_{i}=X_{i}-X_{i-1}$ is a MDS
- $c_{p}<C_{p}$ are positive constants depends on p where $1<p<\infty$
- Idea: relate maximum of a martingale with its quadratic variation

Proof of moment inequality

- Apply Burkholder's inequality to $\left\|\sum_{i=1}^{n} \mathcal{P}_{i-l} X_{i}\right\|_{p}^{p}$
- $\left\|\sum_{i=1}^{n} \mathcal{P}_{i-l} X_{i}\right\|_{p}^{p} \leq C_{p}^{\prime}\left\|\sqrt{\sum_{i=1}^{n}\left(\mathcal{P}_{i-l} X_{i}\right)^{2}}\right\|_{p}^{p}=C_{p}^{\prime} E\left|\sum_{i=1}^{n}\left(\mathcal{P}_{i-l} X_{i}\right)^{2}\right|^{\frac{p}{2}}$
- $\leq C_{p}^{\prime} \sum_{i=1}^{n} E\left|\mathcal{P}_{i-l} X_{i}\right|^{p}=C_{p}^{\prime} \sum_{i=1}^{n}\left\|\mathcal{P}_{i-l} X_{i}\right\|_{p}^{p}$ (by power of sum inequality)
- $=C_{p}^{\prime} n\left\|\mathcal{P}_{0} X_{l}\right\|_{p}^{p}$ (by \mathcal{L}^{p} stationarity)

■ By summing $C_{p} n^{\frac{1}{\mathrm{p}}}\left\|\mathcal{P}_{0} X_{l}\right\|_{p}$, we have $\left\|S_{n}\right\|_{p} \leq(p-1)^{-1} n^{\frac{1}{p}} \Theta_{p}, 1<p \leq 2$

- The other case uses result of Rio (2009)
- Tighter bound may have appeared in recent years but Wu's framework provides a uniform way to describe the condition

Proof of invariance principle

■ Doob's martingale inequality: to be discussed in the next paper

GAUSSIAN APPROXIMATION

Section 6

Strong invariance principle (p.8-9)

- Invariance principle does not specify rate of convergence

■ Komlós-Major-Tusnády approximation $(1975,1976)$ for iid r.v.

- Assume $X_{i} \in \mathcal{L}^{p}$ where $p>2, E\left(X_{i}\right)=0$
- On a richer probability space, there exists $\left\{X_{i}^{\prime}\right\}_{i \in \mathbb{Z}} \stackrel{d}{=}\left\{X_{i}\right\}_{i \in \mathbb{Z}}$ and $S_{n}^{\prime}=\sum_{i=1}^{n} X_{i}^{\prime}$
- We have $\max _{0 \leq t \leq n}\left|S_{t}^{\prime}-\sigma W_{t}\right|=o_{\text {a.s. }}\left(n^{\frac{1}{p}}\right)$
- Where $\sigma=\left\|X_{i}\right\|$
- Further assume $E\left(e^{t\left|X_{1}\right|}\right)<\infty$, we have $\max _{0 \leq t \leq n}\left|S_{t}^{\prime}-\sigma W_{t}\right|=o_{\text {a.s. }}(\log n)$
- A bit like MGF exists

KMT approximation under dependence

■ Theorem (Wu, 2007):

- Assume $X_{i} \in \mathcal{L}^{p}$ where $2<p \leq 4$ has nonlinear Wold representation
- Assume $E\left(X_{i}\right)=0$ and $\sum_{i=1}^{\infty}\left[\delta_{p}(i)+i \omega_{p}(i)\right]<\infty$
- $\quad \sum_{i=1}^{\infty} i \delta_{p}(i)<\infty$ is sufficient
- Then on a richer probability space, there exists $\left\{X_{i}^{\prime}\right\}_{i \geq 0} \stackrel{d}{=}\left\{X_{i}\right\}_{i \geq 0}$
- We have $\max _{0 \leq t \leq n}\left|S_{t}^{\prime}-\sigma W_{t}\right|=o_{\text {a.s. }}\left[n^{\frac{1}{p}}(\log n)^{\frac{1}{2}+\frac{1}{p}}(\log \log n)^{\frac{2}{p}}\right]$
- Where $\sigma=\left\|\sum_{i=0}^{\infty} \mathcal{P}_{0} X_{i}\right\|$
- Theorem (Berkes, Liu \& Wu, 2014):
- Under some other mild assumptions, we have $S_{n}^{\prime}-\sigma W_{n}=o_{\text {a.s. }}\left(n^{\frac{1}{p}}\right)$
- Read the AoP paper if you are interested

SAMPLE COVARIANCE FUNCTION

Section 7

CLT with bounded k

- Sample autocovariance: $\widehat{\gamma}_{k} \xlongequal[=]{\text { def }} \frac{1}{n} \sum_{i=k+1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i-k}-\bar{X}\right)$ where $0 \leq k<n$
- If $\mu=0$, then $\hat{\gamma}_{k}=\frac{1}{n} \sum_{i=k+1}^{n} X_{i} X_{i-k}$
- Assume $E\left(X_{i}\right)=0, X_{i} \in \mathcal{L}^{p}$ where $2<p \leq 4$ and $\Delta_{p}<\infty$
- Let $Y_{i}=\left(X_{i}, \ldots, X_{i-k}\right)^{T}$ and $\Gamma_{k}=\left(\gamma_{0}, \ldots, \gamma_{k}\right)^{T}$ where $k \in \mathbb{N}$ is fixed, we have
- Moment inequality: $\left\|\hat{\gamma}_{k}-\left(1-\frac{k}{n}\right) \gamma_{k}\right\|_{\frac{p}{2}} \leq \frac{3 p-3}{n} \Theta_{p}^{2}+\frac{4 n^{\frac{2}{p}-1}}{p-2}\left\|X_{1}\right\|_{p} \Delta_{p}$
- If $X_{i} \in \mathcal{L}^{4}$ and $\Delta_{4}<\infty, \sqrt{n}\left(\hat{\gamma}_{0}-\gamma_{0}, \ldots, \hat{\gamma}_{k}-\gamma_{k}\right) \xrightarrow{d} N\left[0, E\left(D_{0} D_{0}^{T}\right)\right]$
- Where $D_{0}=\sum_{i=0}^{\infty} \mathcal{P}_{0}\left(X_{i} Y_{i}\right) \in \mathcal{L}^{2}$

Proof of bounded k (p.10)

- Jensen's inequality: $\phi[E(X)] \leq E[\phi(X)]$ where $\phi(\cdot)$ is convex
- Every \mathcal{L}^{p} norm is convex by Minkowski inequality
- Product identity: $a b-\hat{a} \hat{b} \equiv a(b-\hat{b})+\hat{b}(a-\hat{a})$
- As we usually have good knowledge of $a-\hat{a}$ and $b-\hat{b}$
- Cauchy-Schwarz inequality: $\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq \sqrt{\left(\sum_{i=1}^{n} a_{i}\right)^{2}\left(\sum_{i=1}^{n} b_{i}\right)^{2}}$
- Probabilistic version: $|E(X Y)| \leq \sqrt{E\left(X^{2}\right) E\left(Y^{2}\right)}$
- Cramér-Wold device: $\vec{X}^{(n)} \xrightarrow{d} \vec{X} \Leftrightarrow \sum_{i=1}^{k} t_{i} X_{i}^{(n)} \xrightarrow{d} \sum_{i=1}^{k} t_{i} X_{i} \forall \vec{t} \in \mathbb{R}^{k}$
- Help establish multivariate convergence using univariate result

CLT with unbounded k

■ Asymptotic distribution does not depend on the speed of $k_{n} \rightarrow \infty$

- Assume $E\left(X_{i}\right)=0, k_{n} \rightarrow \infty$ and $\Delta_{p}<\infty$
- Let $Z_{i}=\left(X_{i}, \ldots, X_{i-h+1}\right)^{T}$ where $h \in \mathbb{N}$ is fixed, we have
- $\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left[X_{i} Z_{i-k_{n}}-E\left(X_{k_{n}} Z_{0}\right)\right] \xrightarrow{d} N\left(0, \Sigma_{h}\right)$
- Where Σ_{h} has entries $\sigma_{a b}=\sum_{j \in \mathbb{Z}} \gamma_{j+a} \gamma_{j+b}=\sigma_{0, a-b}$ where $1 \leq a, b \leq h$
- If $\frac{k_{n}}{n} \rightarrow 0, \sqrt{n}\left[\left(\hat{\gamma}_{k_{n}}, \ldots, \hat{\gamma}_{k_{n}-h+1}\right)^{T}-\left(\gamma_{k_{n}}, \ldots, \gamma_{k_{n}-h+1}\right)^{T}\right] \xrightarrow{d} N\left(0, \Sigma_{h}\right)$
- The above results come from Wu (2008) for short-range dependence
- Can be extended to long-range linear process

Estimation problem of γ_{k}

- $\hat{\gamma}_{k}$ is not a good estimator of γ_{k} when k is large
- Example: $k \rightarrow \infty$ with $\frac{k}{n} \rightarrow 0$ satisfies $\sqrt{n} \gamma_{k} \rightarrow 0$
- MSE of $\hat{\gamma}_{k}: E\left[\left(\hat{\gamma}_{k}-\gamma_{k}\right)^{2}\right] \sim \frac{\sigma_{00}}{n}$
- MSE of $\tilde{\gamma}_{k}=0: E\left[\left(\tilde{\gamma}_{k}-\gamma_{k}\right)^{2}\right]=o\left(\frac{1}{n}\right) \ll O\left(\frac{1}{n}\right)$
- Little o: $f(x)=o(g(x)) \Leftrightarrow \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$
- Shrinkage estimate $\hat{\gamma}_{k} \mathbb{I}_{\hat{\gamma}_{k} \mid \geq c_{n}}$ with carefully chosen $c_{n} \rightarrow 0$ can reduce MSE
- Similar to Stein's phenomenon (discussed last semester)
- Details to be discussed in next section

ESTIMATION OF COVARIANCE MATRIX

Section 8

Convergence problem of $\hat{\Sigma}_{n}$ (p.11)

- Operator norm: $\rho(A) \stackrel{\text { def }}{=} \max _{x \in \mathbb{R}^{n}:|x|=1}|A x|$
$-|x| \stackrel{\text { def }}{=} \sqrt{\sum_{i=1}^{n} x_{i}^{2}}$
- Hence $\rho^{2}(A)$ is the largest eigenvalue of $A^{T} A$
- Previous entry-wise convergence result does not imply matrix convergence of $\widehat{\Sigma}_{n}$
- Inconsistency is due to previous estimation problem
- Conjecture (Wu \& Pourahmadi, 2009): $\rho\left(\widehat{\Sigma}_{n}-\Sigma_{n}\right) \xrightarrow{d} \operatorname{Gumbel}(0,1)$
- With proper centering and scaling
- Gumbel distribution is usually used in extreme value theory

Truncation technique

- Banded covariance matrix estimator: $\widehat{\Sigma}_{n, l_{n}}=\left(\hat{\gamma}_{i-j} \mathbb{I}_{|i-j| \leq l_{n}}\right)_{1 \leq i, j \leq n}$
- Under suitable conditions on banding parameter $l_{n}, \hat{\Sigma}_{n, l_{n}}$ is consistent
- However $\hat{\Sigma}_{n, l_{n}}$ may not be non-negative definite
- Tapered version: $\tilde{\Sigma}_{n, l_{n}}=\left(\hat{\gamma}_{i-j} w\left(\frac{|i-j|}{l_{n}}\right)\right)_{1 \leq i, j \leq n}=\widehat{\Sigma}_{n} \star W_{n}$
- \star is the element-wise product
- $\quad w(\cdot)$ is a lag window function (aka kernel) satisfying some conditions
- Such that W_{n} is non-negative definite
- Example (Bartlett kernel/triangular window): $w_{B}(u)=\max (0,1-|u|)$
- Schur Product Theorem: $A \star B$ is non-negative definite if A, B are non-negative definite

Result of $\hat{\Sigma}_{n}$

- Theorem (Wu \& Pourahmadi, 2009):
- Assume X_{i} has nonlinear Wold representation and $\Theta_{2}<\infty$
- If $\sigma=\left\|\sum_{i=0}^{\infty} \mathcal{P}_{0} X_{i}\right\|>0$, then $\rho\left(\widehat{\Sigma}_{n}-\Sigma_{n}\right) \stackrel{p}{\rightarrow} 0$
- i.e. inconsistency when long-run variance is non-zero
- Theorem (Xiao \& Wu, 2010):
- Assume X_{i} has nonlinear Wold representation and $E\left(X_{i}\right)=0$
- Assume $X_{i} \in \mathcal{L}^{p}$ where $p>2$ and $\sum_{i=j}^{\infty} \delta_{p}(i)=o\left(\frac{1}{\log j}\right)$ as $j \rightarrow \infty$
- Assume $\min _{\vartheta} f(\vartheta)>0$
- f is the spectral density function which will be discussed in next section
- Then $\exists c>0$ s.t. $\lim _{n \rightarrow \infty} P\left[c^{-1} \log n \leq \rho\left(\widehat{\Sigma}_{n}-\Sigma_{n}\right) \leq c \log n\right]=1$
- i.e. $\rho\left(\hat{\Sigma}_{n}-\Sigma_{n}\right)=o(\log n)$ as $n \rightarrow \infty$
- These two theorems implies $\widehat{\Sigma}_{n}$ usually does not converge

Result of $\tilde{\Sigma}_{n, l_{n}}$

- Upper bound: assume $E\left(X_{i}\right)=0$ and $\Delta_{p}<\infty$ for $2<p \leq 4$
- Let $b_{n}=\sum_{k=1}^{l}\left|1-w\left(\frac{k}{l}\right)+\frac{k}{n} w\left(\frac{k}{l}\right)\right|\left|\gamma_{k}\right|+\sum_{j=l+1}^{n}\left|\gamma_{j}\right|$
- Then $\left\|\rho\left(\tilde{\Sigma}_{n, l}-\Sigma_{n}\right)\right\|_{q} \leq 2 b_{n}+(l+1) \frac{4\left\|X_{1}\right\|_{p} \Delta_{p}}{n^{1-\frac{1}{q}}(p-2)}$ where $q=\frac{p}{2}, 0 \leq l<n$
- Note that this bound is non-asymptotic
- Hence if $l=l_{n} \rightarrow \infty$ and $\frac{l_{n}}{n^{1-\frac{1}{q}}} \rightarrow 0,\left\|\rho\left(\widetilde{\Sigma}_{n, l}-\Sigma_{n}\right)\right\|_{q} \rightarrow 0$
- Theorem (Xiao \& Wu, 2010):
- Assume $X_{i} \in \mathcal{L}^{p}$ where $p>4$ and $\Theta_{p}(m)=O\left(m^{-\alpha}\right)$ where $\alpha>0$
- Let $l_{n}=n^{\lambda}$ where $\lambda \in(0,1)$ satisfy $\lambda<\frac{p \alpha}{2}$ and $(1-2 \alpha) \lambda<1-\frac{4}{p}$
- Then $\rho\left(\tilde{\Sigma}_{n, l}-\Sigma_{n}\right)=O\left(b_{n}\right)+O_{\mathbb{P}}\left[n^{-\frac{1}{2}}\left(l_{n} \log l_{n}\right)^{\frac{1}{2}}\right]$
- Adding additional assumptions gives a lower bound

Special cases (p.12)

- Assume $p=4$ and $\gamma_{k}=O\left(\rho^{k}\right)$ for some $0<\rho<1$
- Rectangular window: $w(k)=1$ for $|k| \leq l$
- Choose $l=l_{n}=\left\lfloor\frac{\log n}{-2 \log \rho}\right\rfloor$, then $\left\|\rho\left(\tilde{\Sigma}_{n, l}-\Sigma_{n}\right)\right\|=O\left(n^{-\frac{1}{2}} \log n\right)$
- Almost optimal but may not be non-negative definite
- Bartlett window: $w(k)=1-\frac{|k|}{l}$ for $|k| \leq l$
- Choose $l=n^{\frac{1}{4}}$, then

$$
-\left\|\rho\left(\widetilde{\Sigma}_{n, l}-\Sigma_{n}\right)\right\|=O(1) \sum_{k=1}^{l}[1-w(k)]\left|\gamma_{k}\right|+O\left(n^{-\frac{1}{2}}+\rho^{l}\right)=O\left(n^{-\frac{1}{4}}\right)
$$

- Parzen window: $1-w_{P}(u)=O\left(u^{2}\right)$
- Choose $l=n^{\frac{1}{6}}$, then
- $\left\|\rho\left(\widetilde{\Sigma}_{n, l}-\Sigma_{n}\right)\right\|=O\left(l^{-2}+\ln ^{-\frac{1}{2}}+\rho^{l}\right)=O\left(n^{-\frac{1}{3}}\right)$

Application

- The upper bound can be applied to Wiener-Kolmogorov prediction
- Since γ_{k} can only be estimated with finite sample in practice
- Probably referring to Wiener filter
- Kalman filter is nonstationary extension of Wiener filter
- More popular in practice
- Help establish asymptotic theory of estimates of coefficients in
- Wold decomposition theorem
- Discrete Wiener-Hopf equations
- A method to solve systems of integral equations

PERIODOGRAMS

Section 9

Frequency domain

- Time domain: changes of a signal with respect to time
- Frequency domain: changes of a signal with respect to frequency
- How much of a signal lies within each given band over a range of frequencies
- Why frequency domain?
- Simplify the mathematical analysis
- Give an intuitive understanding of the qualitative behavior of the system
- E.g. periodicity, power

Tools (p.12-13)

- Periodogram: $I_{n}(\phi) \stackrel{\text { def }}{=} \frac{\left|S_{n}(\phi)\right|^{2}}{n} \forall \phi \in \mathbb{R}$
- Discrete Fourier transform (DFT): $S_{n}(\phi)=\sum_{t=1}^{n} x_{t} e^{i t \phi}$ where $i=\sqrt{-1}$
- Spectral distribution function: right-continuous, non-decreasing F that satisfy
- $\gamma_{k}=\int_{0}^{2 \pi} e^{i k \phi} d F(\phi)$ and is bounded on $[0,2 \pi]$
- Spectral density function: $f=F^{\prime}$ if F is absolutely continuous

■ Theorem (Peligrad \& Wu, 2010): for regular nonlinear Wold process,

- If $\sum_{k \in \mathbb{Z}}\left|\gamma_{k}\right|<\infty$, then $f(\phi)=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} \gamma_{k} e^{i k \phi}=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} \gamma_{k} \cos (k \phi)$
- Euler's formula: $e^{i \phi}=\cos \phi+i \sin \phi$
- Continuity property: if $u_{p}=\sum_{k=1}^{\infty} k^{p}\left|\gamma_{k}\right|<\infty$, then $f \in \mathcal{C}^{p}(\mathbb{R})$
- Larger p such that $u_{p}<\infty$ means weaker serial dependence

Central limit problem of $S_{n}(\phi)$

- Assume X_{t} is second order stationary, $E\left(X_{t}\right)=0$ and $\sum_{k \in \mathbb{Z}}\left|\gamma_{k}\right|<\infty$
- Then $E\left[I_{n}(\phi)\right]=\sum_{k=1-n}^{n-1}\left(1-\frac{|k|}{n}\right) \gamma_{k} \cos (k \phi) \rightarrow 2 \pi f(\phi)$ as $n \rightarrow \infty$
- Hence $\frac{\left|S_{n}(\phi)\right|^{2}}{2 \pi n}$ is asymptotically unbiased for $f(\phi)$
- Note that $S_{n}(\phi)$ comes from discrete transform but $f(\phi)$ comes from continuous
- However it is inconsistent by the following theorem
- Theorem: assume $E\left(X_{t}^{2}\right)<\infty$
- For almost all $\vartheta \in \mathbb{R}$ (Lebesgue), we have $\binom{\mathfrak{R}}{\mathfrak{J}} \frac{S_{n}(\vartheta)}{\sqrt{n}} \xrightarrow{d} N\left[0, \pi f(\vartheta) I d_{2}\right]$
- Consequently, $\frac{I_{n}(\vartheta)}{2 \pi f(\vartheta)} \xrightarrow{d} \operatorname{Exp}(1)$
- Proposition: this holds $\forall \vartheta \in(0,2 \pi)$ if $\sum_{i=0}^{\infty}\left\|\mathcal{P}_{0} X_{i}-\mathcal{P}_{0} X_{i+1}\right\|<\infty$
- A sufficient condition is $\Theta_{p}<\infty$
- For almost all pairs (ϑ, φ) (Lebesgue), $\frac{s_{n}(\vartheta)}{\sqrt{n}} \perp \frac{s_{n}(\varphi)}{\sqrt{n}}$ asymptotically

Fast Fourier transform

- Discrete Fourier transform: $O\left(n^{2}\right)$ time complexity to obtain $S_{n}\left(\vartheta_{j}\right), j=1, \ldots, n$
- Fast Fourier transform: $O\left(n \log _{2} n\right)$ time complexity to obtain same estimate
- A size- $N\left(N=N_{1} N_{2}\right)$ DFT can be expressed as two DFTs with size N_{1}, N_{2}
- This is possible by complex root of unity (aka twiddle factors)
- Cooley-Tukey algorithm
- Faster Fourier transform?
- Lower bound on time complexity of FFT is an open problem
- Some results under sparsity (Hassanieh et. al., 2012)

Central limit problem of $S_{n}\left(\vartheta_{j}\right)$

- Theorem: assume X_{i} is nonlinear Wold, $\Theta_{p}<\infty$ and $\min _{\vartheta} f(\vartheta)>0$,
- Let $q \in \mathbb{N}, m=\left\lfloor\frac{n-1}{2}\right\rfloor$ and $Y_{k} \stackrel{i d}{\sim} N(0,1)$ for $1 \leq k \leq 2 q$
- Then $\left\{\frac{s_{n}\left(\vartheta_{l_{j}}\right)}{\sqrt{n \pi f\left(\vartheta_{l_{j}}\right.}}, 1 \leq j \leq q\right\} \xrightarrow{d}\left\{Y_{2 j-1}+i Y_{2 j}, 1 \leq j \leq q\right\}$
- Where $1 \leq l_{1}<\cdots<l_{q} \leq m$ may depend on n
- Consequently, $\left\{\frac{I_{n}\left(\vartheta_{l_{j}}\right)}{f\left(\vartheta_{l_{j}}\right)}, 1 \leq j \leq q\right\} \xrightarrow{d}\left\{E_{j}, 1 \leq j \leq q\right\}$ where $E_{j} \stackrel{i i d}{\sim} \operatorname{Exp}(1)$
- The remaining part discuss the maximum error of approximation
- Continuous mapping theorem: $X_{n} \xrightarrow{d} X \Rightarrow g\left(X_{n}\right) \xrightarrow{d} g(X)$ if $g(\cdot)$ is continuous
- This is only the part used. Check standard reference for full theorem
- Theorem (Lin \& Liu, 2009) states convergence to standard Gumbel

ESTIMATION OF SPECTRAL DENSITIES

Section 10

Estimation problem of $f(\theta)$ (p.14)

- Inconsistency of $I_{n}(\vartheta)$ (though unbiased) proved in last section
- Lag window estimator: $f_{n}(\theta)=\frac{1}{2 \pi} \sum_{k=1-n}^{n-1} K\left(\frac{k}{B_{n}}\right) \hat{\gamma}_{k} e^{i k \theta}$ where
- Bandwidth B_{n} satisfies $B_{n} \rightarrow \infty$ and $\frac{B_{n}}{n} \rightarrow 0$
- Window K is symmetric, bounded, continuous at 0 and $K(0)=1$
- This estimator is consistent but its limiting distribution is highly nontrivial
- Theorem (Liu \& Wu, 2010): assume $E\left(X_{t}\right)=0, E\left(X_{t}^{4}\right)<\infty$ and $\Delta_{4}<\infty$
- Let $B_{n} \rightarrow \infty$ and $B_{n}=o(n)$ as $n \rightarrow \infty$
- Assume K is symmetric, bounded, $\lim _{u \rightarrow 0} K(u)=K(0)=1$
- Assume $\kappa \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} K^{2}(u) d u<\infty$ and K is continuous at all but finite points
- Assume $\sup _{0<w \leq 1} \sum_{j \geq \frac{c}{w}} K^{2}(j w) \rightarrow 0$ as $c \rightarrow \infty$
- Then $\sqrt{\frac{n}{B_{n}}}\left\{f_{n}(\theta)-E\left[f_{n}(\theta)\right]\right\} \xrightarrow{d} N\left[0,\left(1+\frac{\mathbb{I}_{\frac{\theta}{\pi}} \in \mathbb{Z}}{}\right) f^{2}(\theta) \kappa\right]$ for $0 \leq \theta<2 \pi$

Long-run variance

- Long-run variance: $2 \pi f(0)=\frac{2 \pi}{2 \pi} \sum_{k \in \mathbb{Z}} \gamma_{k} \cos (0)=\sum_{k \in \mathbb{Z}} \gamma_{k}=\sigma^{2}$
- First equality is due to theorem in Peligrad \& Wu (2010) (slide p.41)
- Last equality is due to probabilistic representation of σ^{2} (slide p.20)
- Put $\theta=0$ in the previous CLT, we have $\sqrt{\frac{n}{B_{n}}}\left\{f_{n}(0)-f(0)\right\} \xrightarrow{d} N\left[0,2 f^{2}(0) \kappa\right]$
- If the bandwidth $b_{n}=B_{n}^{-1}$ satisfy
- $2 \pi\left\{E\left[f_{n}(0)\right]-f(0)\right\}=\sum_{k=1-n}^{n-1} K\left(k b_{n}\right)\left(1-\frac{|k|}{n}\right) \gamma_{k}-\sum_{k \in \mathbb{Z}} \gamma_{k}=O\left[\left(n b_{n}\right)^{-\frac{1}{2}}\right]$
- Log transformation can stabilize the variance (ease Cl but may lose good property)
- $\sqrt{\frac{n}{B_{n}}}\left[\log f_{n}(0)-\log f(0)\right] \xrightarrow{d} N\left(0,2^{2}\right)$

Recursive estimation

- Lag window estimator is non-recursive as bandwidth depends on n
- When bandwidth changes, all blocks need to be updated (time complexity)
- If all blocks need to be updated, we need store all data (space complexity)
- Recursive estimation is possible by letting bandwidth depends on i
- When bandwidth changes, only the new block need to be updated
- If bandwidth is increasing in a block, we only need the new data
- Xiao and Wu (2010) provides algorithm for spectral density
- Wu (2009), Chan and Yau (2017) provides algorithms for long-run variance

KERNEL ESTIMATION

Section 11

Kernel regression

- Model: $Y_{i}=G\left(X_{i}, \eta_{i}\right), X_{i}=\left(\ldots, \epsilon_{i-1}, \epsilon_{i}\right)$
- Important example: the autoregressive model $X_{i+1}=R\left(X_{i}, \epsilon_{i+1}\right)$
- Nadaraya-Watson estimator of $g\left(x_{0}\right)=E\left(Y_{n} \mid X_{n}=x_{0}\right): g_{n}\left(x_{0}\right)=\frac{T_{n}\left(x_{0}\right)}{f_{n}\left(x_{0}\right)}$
- $T_{n}(x)=\frac{1}{n} \sum_{t=1}^{n} Y_{t} K_{b_{n}}\left(x-X_{t}\right)$ where $K_{b_{n}}(x)=\frac{1}{b_{n}} K\left(\frac{x}{b_{n}}\right)$
- Kernel K is symmetric, bounded on \mathbb{R}, has bounded support and $\int_{\mathbb{R}} K(u) d u=1$
- Bandwidth $b_{n} \rightarrow 0$ and $n b_{n} \rightarrow \infty$
- $f_{n}\left(x_{0}\right)=\frac{1}{n} \sum_{t=1}^{n} K_{b_{n}}\left(x_{0}=X_{t}\right)$
- Rosenblatt's (1956) kernel density estimate

CLT for $g_{n}\left(x_{0}\right)$

- l-step ahead conditional densities: $F_{l}\left(X_{i+l} \leq x \mid \mathcal{F}_{i}\right), f_{l}\left(x \mid \mathcal{F}_{i}\right)=\frac{d}{d x} F_{l}\left(x \mid \mathcal{F}_{i}\right)$
- Theorem (Wu, 2005; Wu, Huang \& Huang, 2010)
- Assume $\exists c_{0}<\infty$ s.t. $\sup _{x \in \mathbb{R}} f_{1}\left(x \mid \mathcal{F}_{i}\right) \leq c_{0}$ a.s. and $\sum_{i=1}^{\infty} \sup _{x}\left\|\mathcal{P}_{0} f_{1}\left(x \mid \mathcal{F}_{i}\right)\right\|<\infty$
- Assume $b_{n} \rightarrow 0, n b_{n} \rightarrow \infty$ and let $\kappa=\int_{\mathbb{R}} K^{2}(u) d u$
- Then $\sqrt{n b_{n}}\left\{f_{n}\left(x_{0}\right)-E\left[f_{n}\left(x_{0}\right)\right]\right\} \xrightarrow{d} N\left[0, f\left(x_{0}\right) \kappa\right]$
- Let $V_{p}(x)=E\left|G\left(x, \eta_{n}\right)\right|^{p}$ and $\sigma^{2}(x)=V_{2}(x)-g^{2}(x)$
- If $f\left(x_{0}\right)>0, V_{2}, g \in \mathcal{C}(\mathbb{R})$ and $V_{p}(x)$ is bounded on a neighborhood of x_{0}
- Then $\sqrt{n b_{n}}\left\{g_{n}\left(x_{0}\right)-\frac{E\left[T_{n}\left(x_{0}\right)\right]}{E\left[f_{n}\left(x_{0}\right)\right]}\right\} \xrightarrow{d} N\left[0, \frac{\sigma^{2}\left(x_{0}\right) \kappa}{f\left(x_{0}\right)}\right]$
- Note that $E\left[\frac{T_{n}\left(x_{0}\right)}{f_{n}\left(x_{0}\right)}\right]$ does not necessary equal to $\frac{E\left[T_{n}\left(x_{0}\right)\right]}{E\left[f_{n}\left(x_{0}\right)\right]}$
- This implies they are probably independent

Maximum deviation

- Maximum deviation: $\Lambda_{n} \stackrel{\text { def }}{=} \sup _{l \leq x \leq u} \sqrt{\frac{n b}{\kappa f(x)}}\left|f_{n}(x)-E\left[f_{n}(x)\right]\right|$
- Theorem (Liu \& Wu, 2010)
- Assume $X_{n}=a_{0} \epsilon_{n}+g\left(\ldots, \epsilon_{i-2}, \epsilon_{i-1}\right) \in \mathcal{L}^{p}$ for some $p>0$ where $a_{0} \neq 0$
- Assume pdf f_{ϵ} of ϵ_{1} is positive and $\sup _{x \in \mathbb{R}}\left[f_{\epsilon}(x)+\left|f_{\epsilon}^{\prime}(x)\right|+\left|f_{\epsilon}^{\prime \prime}(x)\right|\right]<\infty$ $x \in \mathbb{R}$
- Assume $\exists 0<\delta_{2} \leq \delta_{1}<1$ such that $n^{-\delta_{1}}=O\left(b_{n}\right)$ and $b_{n}=O\left(n^{-\delta_{2}}\right)$
- Let $p^{\prime}=\min (p, 2)$ and $\Theta_{n}=\sum_{i=0}^{n} \delta_{p^{\prime}}(i)^{\frac{p^{\prime}}{2}}$
- Assume $\Psi_{n, p^{\prime}}=O\left(n^{-\gamma}\right)$ for some $\gamma>\frac{\delta_{1}}{1-\delta_{1}}$
- Assume $\sum_{k=-n}^{\infty}\left(\Theta_{n+k}-\Theta_{k}\right)^{2}=o\left(b_{n}^{-1} n \log n\right)$
- Let the kernel $K \in \mathcal{C}^{1}[-1,1]$ with $K(\pm 1)=0, l=0$ and $u=1$
- Then $P\left[\left(2 \log b^{-1}\right)^{-\frac{1}{2}} \Lambda_{n}-2 \log b^{-1}-\frac{1}{2} \log K_{3} \leq z\right] \rightarrow e^{-2 e^{-z}} \forall z \in \mathbb{R}$
- Where $K_{3}=\frac{\int_{-1}^{1}\left[K^{\prime}(t)\right]^{2} d t}{4 \pi^{2} \int_{-1}^{1} K^{2}(t) d t}$

U-STATISTICS

Section 12

U-statistic

- Weighted U-statistic: $U_{n}=\sum_{1 \leq i, j \leq n} w_{i-j} K\left(X_{i}, X_{j}\right)$
- Where $w_{i}=w_{-i}$ are weights and K is symmetric measurable function
- Predictive dependence: $\theta_{i, j}=\left\|\mathcal{P}_{0} K\left(X_{i}, X_{j}\right)\right\|$
- Theorem (Hsing and Wu, 2004)
- Assume $\sum_{k=0}^{\infty} \sum_{i=0}^{\infty}\left|w_{k}\right| \theta_{i, i-k}<\infty$ (summable weights)
- Then $\exists \sigma^{2}<\infty$ such that $\frac{1}{\sqrt{n}}\left[U_{n}-E\left(U_{n}\right)\right] \xrightarrow{d} N\left(0, \sigma^{2}\right)$
- Let $W_{n}(i)=\sum_{j=1}^{n} w_{i-j}$ and $W_{n}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} W_{n}^{2}(i)}$
- Assume $\sum_{i=1}^{\infty}\left|w_{i}\right|=\infty, \sum_{k=0}^{n}(n-k) w_{k}^{2}=o\left(n W_{n}^{2}\right), \liminf _{n \rightarrow \infty} \frac{W_{n}}{\sum_{i=0}^{\infty}\left|w_{i}\right|}>0$
- Assume $\sum_{l=0}^{\infty} \sup _{j \in \mathbb{Z}}\left\|K\left(X_{0}, X_{j}\right)-K\left(\tilde{X}_{0}, \tilde{X}_{j}\right)\right\|<\infty$
- Where $\tilde{X}_{j}=E\left(X_{j} \mid \epsilon_{j-l}, \ldots, \epsilon_{j}\right)$
- Then $\exists \sigma_{U}^{2}<\infty$ such that $\frac{1}{w_{n} \sqrt{n}}\left[U_{n}-E\left(U_{n}\right)\right] \xrightarrow{d} N\left(0, \sigma_{U}^{2}\right)$

