Diagnosing Learning Algorithms with Super-optimal Recursive Estimators (No. 704)

Man Fung Leung, Kin Wai Chan

Department of Statistics, The Chinese University of Hong Kong

ICSA 2020 Applied Statistics Symposium

Heman Leung (CUHK)

Super-optimal Recursive Estimators (704)

ICSA 2020

Elevator Speech

ICSA 2020

3 🕨 🖌 3 🕨

< 一 →

Introduction

Consider the estimation of sample mean $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ where:

- the data X_i can be serially dependent;
- 2 the data X_i arrives sequentially;
- Ithe sample size n is not known a priori.

Two ways to compute \bar{X}_n :

- (Non-recursive) calculate $(X_1 + X_2 + \cdots + X_n)/n$;
 - O(n)-time update: need to add up n elements.
 - **2** O(n)-space update: need to remember *n* elements.
- 2 (Recursive) calculate $\{(n-1)\overline{X}_{n-1} + X_n\}/n$.
 - O(1)-time update: need to add up 2 elements only.
 - **2** O(1)-space update: need to remember 2 elements only.

This setting appears frequently with the use of learning algorithms.

・ロット (雪) (目) (日) ヨ

Diagnosing Learning Algorithms with LRV

How to diagnose, e.g., convergence, in the previous setting?

Tool: Central Limit Theorem

Under suitable conditions,
$$\sqrt{n} \left(\bar{X}_n - \mu \right) \stackrel{\mathrm{d}}{\to} \mathsf{N} \left(0, \sum_{k \in \mathbb{Z}} \gamma_k \right)$$
.

Long-run variance (LRV): $\sigma^2 = \sum_{k \in \mathbb{Z}} \gamma_k$

- differs from sample variance $n^{-1} \sum_{i=1}^{n} (X_i \bar{X}_n)^2$ due to dependency;
- 2 needs to be updated sequentially to diagnose at different n.

An Efficiency Dilemma with Existing Works

Q Classical estimators: statistically efficient but O(n)-time update.

 Recursive estimators: O(1)-time update but higher asymptotic mean squared error (AMSE).

(日) (雪) (ヨ) (ヨ) (ヨ)

Our Contributions

As we investigate the efficiency dilemma, we develop and discuss:

- (Theoretical) recursive LRV estimators with super-optimal AMSE as compared with their non-recursive counterparts;
- (Theoretical) the first sufficient condition that characterizes
 O(1)-time or space updates;
- (Computational) the first mini-batch estimator that can be much faster than existing algorithms (including recursive) in practice;
- (Computational) automatic optimal parameters selection algorithm;
- (Practical) applications in diagnosing Markov chain Monte Carlo (MCMC) and stochastic gradient descent (SGD).

In the Poster ...

Points 1, 3 and 5 are discussed. The remaining parts need more elaboration and so deferred to the appendix here.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

Sneak Peek: Statistical Efficiency

Figure 1: Comparison of the relative empirical MSEs under Bartlett kernel ('B'), PSR ('P'), TSR ('T'), LASER(1,1) ('E') and LASER(1,2) ('R'). The experiments are conducted based on 1000 replications.

ICSA 2020

Sneak Peek: Computational Efficiency

Figure 2: Comparison of the computation time under existing implementations of Bartlett kernel (sandwich), overlapping batch means (mcmcse), PSR (rTACM) and mini-batch LASER (rlaser) in R. The experiment is conducted based on 50 replications and 100,000 samples.

Appendix

< □ > < □ > < □ > < □ > < □ >

Full Version of the LASER Principles

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n T\left(\frac{|i-j|}{t_n(i)}\right) S\left(\frac{|i-j|}{s_n(i)}\right) X_i X_j.$$

- (Local Subsampling) An O(1)-time update algorithm should utilize local subsample.
- **2** (Asynchronous Tapering) Under stationarity, (X_i, X_j) and $(X_{i'}, X_{j'})$ should receive the same scaling if |i j| = |i' j'|.
- (Separated Parameters) The tapering and subsampling parameters should be separately chosen.
- (Exterior Tapering) An O(1)-time update algorithm should exteriorize the tapering parameter.
- (Ramped Subsampling) An O(1)-space update algorithm should ramp up the subsample until it is too large.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

Time Complexity of $\hat{\sigma}_n^2$

Sufficient Condition for O(1)-time Update

Let $q, C \in \mathbb{Z}^+$ and $c_0, \ldots, c_q \in \mathbb{R}$ be fixed. Suppose $\hat{\sigma}_n^2$ can be written as

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n X_i \sum_{j=1}^n T\left(\frac{|i-j|}{t_n}\right) S\left(\frac{|i-j|}{s_i}\right) X_j,\tag{1}$$

satisfying

- **(**) the tapering function is of the form $T(u) = \sum_{r=0}^{q} c_r u^r$;
- 3 the subsampling function is of the form $S(u) = \mathbb{I}_{u < 1}$;

• the subsampling parameter s_i is local and $|s_i - s_{i-1}| < C$.

Then $\hat{\sigma}_n^2$ can be updated in O(1)-time.

Space Complexity of $\hat{\sigma}_n^2$

Heman Leung (CUHK)

Sufficient Condition for O(1)-space Update

Suppose $\hat{\sigma}_n^2$ can be written as (1), which satisfies

- **1** the estimator $\hat{\sigma}_n^2$ can be updated in O(1)-time;
- 2 the subsampling function is of the form $S(u) = \mathbb{I}_{u < 1}$;

3 the ramped subsampling parameter s'_i with $\phi \ge 2$ is used in place of s_i . Then $\hat{\sigma}_n^2$ can be updated in O(1)-space.

Automatic Optimal Parameters Selection

MSE-optimal parameters depend on $\kappa_q = |v_q|/\sigma^2$:

- () σ^2 : readily available from last iteration
- v_q: recursively estimated by extending LASER

$$\hat{v}_{n,\text{LASER}(1,\phi,1,q)} = \frac{2}{n} \sum_{i=1}^{n} \sum_{k=1}^{s_i'-1} \left(1 - \frac{k}{t_n}\right) k^q X_i X_j.$$

Advantages of this extension:

- I Fully utilize available data as compared with pilot estimation.
- Preserve desirable properties such as O(1)-space or mini-batch update.

Models used in Monte Carlo Experiments

The following time series models are used:

- ARMA(1,1): Let $X_i \mu = a(X_{i-1} \mu) + b\varepsilon_{i-1} + \varepsilon_i$, where $\varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \nu^2)$. Take a = 0.5, b = 0.5, $\nu = 1$ and $\mu = 0$.
- **2** Bilinear: Let $X_i \mu = (a + b\varepsilon_i)(X_{i-1} \mu) + \varepsilon_i$, where $\varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \nu^2)$. Take a = 0.9, b = 0.1, $\nu = 1$ and $\mu = 0$.
- Fractional Gaussian Noise Process: Let X_i = Y_i be a zero-mean Gaussian processes with polynomial decaying ACVF, i.e., \[\mathbb{E}(Y_0Y_k) = a(k+b)^{-c}. Take a = 70, b = 7 and c = 3. \]