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Introduction

Consider the estimation of sample mean X̄n = n−1
∑n

i=1 Xi where:

1 the data Xi can be serially dependent;

2 the data Xi arrives sequentially;

3 the sample size n is not known a priori.

Two ways to compute X̄n:

1 (Non-recursive) calculate (X1 + X2 + · · ·+ Xn)/n;
1 O(n)-time update: need to add up n elements.
2 O(n)-space update: need to remember n elements.

2 (Recursive) calculate {(n − 1)X̄n−1 + Xn}/n.
1 O(1)-time update: need to add up 2 elements only.
2 O(1)-space update: need to remember 2 elements only.

This setting appears frequently with the use of learning algorithms.
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Diagnosing Learning Algorithms with LRV

How to diagnose, e.g., convergence, in the previous setting?

Tool: Central Limit Theorem

Under suitable conditions,
√
n
(
X̄n − µ

) d→ N
(
0,
∑

k∈Z γk
)
.

Long-run variance (LRV): σ2 =
∑

k∈Z γk

1 differs from sample variance n−1
∑n

i=1(Xi − X̄n)2 due to dependency;

2 needs to be updated sequentially to diagnose at different n.

An Efficiency Dilemma with Existing Works

1 Classical estimators: statistically efficient but O(n)-time update.

2 Recursive estimators: O(1)-time update but higher asymptotic mean
squared error (AMSE).
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Our Contributions

As we investigate the efficiency dilemma, we develop and discuss:

1 (Theoretical) recursive LRV estimators with super-optimal AMSE as
compared with their non-recursive counterparts;

2 (Theoretical) the first sufficient condition that characterizes
O(1)-time or space updates;

3 (Computational) the first mini-batch estimator that can be much
faster than existing algorithms (including recursive) in practice;

4 (Computational) automatic optimal parameters selection algorithm;

5 (Practical) applications in diagnosing Markov chain Monte Carlo
(MCMC) and stochastic gradient descent (SGD).

In the Poster . . .

Points 1, 3 and 5 are discussed. The remaining parts need more
elaboration and so deferred to the appendix here.

Heman Leung (CUHK) Super-optimal Recursive Estimators (704) ICSA 2020



Sneak Peek: Statistical Efficiency
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Figure 1: Comparison of the relative empirical MSEs under Bartlett kernel (‘B’), PSR
(‘P’), TSR (‘T’), LASER(1,1) (‘E’) and LASER(1,2) (‘R’). The experiments are
conducted based on 1000 replications.
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Sneak Peek: Computational Efficiency
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Figure 2: Comparison of the computation time under existing implementations of
Bartlett kernel (sandwich), overlapping batch means (mcmcse), PSR (rTACM) and
mini-batch LASER (rlaser) in R. The experiment is conducted based on 50 replications
and 100,000 samples.
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Appendix
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Full Version of the LASER Principles

σ̂2n =
1

n

n∑
i=1

n∑
j=1

T

(
|i − j |
tn(i)

)
S

(
|i − j |
sn(i)

)
XiXj .

1 (Local Subsampling) An O(1)-time update algorithm should utilize
local subsample.

2 (Asynchronous Tapering) Under stationarity, (Xi ,Xj) and (Xi ′ ,Xj ′)
should receive the same scaling if |i − j | = |i ′ − j ′|.

3 (Separated Parameters) The tapering and subsampling parameters
should be separately chosen.

4 (Exterior Tapering) An O(1)-time update algorithm should exteriorize
the tapering parameter.

5 (Ramped Subsampling) An O(1)-space update algorithm should ramp
up the subsample until it is too large.
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Time Complexity of σ̂2
n

Sufficient Condition for O(1)-time Update

Let q,C ∈ Z+ and c0, . . . , cq ∈ R be fixed. Suppose σ̂2n can be written as

σ̂2n =
1

n

n∑
i=1

Xi

n∑
j=1

T

(
|i − j |
tn

)
S

(
|i − j |
si

)
Xj , (1)

satisfying

1 the tapering function is of the form T (u) =
∑q

r=0 cru
r ;

2 the subsampling function is of the form S(u) = Iu<1;

3 the subsampling parameter si is local and |si − si−1| < C .

Then σ̂2n can be updated in O(1)-time.
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Space Complexity of σ̂2
n

Sufficient Condition for O(1)-space Update

Suppose σ̂2n can be written as (1), which satisfies

1 the estimator σ̂2n can be updated in O(1)-time;

2 the subsampling function is of the form S(u) = Iu<1;

3 the ramped subsampling parameter s ′i with φ ≥ 2 is used in place of si .

Then σ̂2n can be updated in O(1)-space.
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Automatic Optimal Parameters Selection

MSE-optimal parameters depend on κq = |vq|/σ2:

1 σ2: readily available from last iteration

2 vq: recursively estimated by extending LASER

v̂n,LASER(1,φ,1,q) =
2

n

n∑
i=1

s′i−1∑
k=1

(
1− k

tn

)
kqXiXj .

Advantages of this extension:

1 Fully utilize available data as compared with pilot estimation.

2 Preserve desirable properties such as O(1)-space or mini-batch
update.
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Models used in Monte Carlo Experiments

The following time series models are used:

1 ARMA(1,1): Let Xi − µ = a(Xi−1 − µ) + bεi−1 + εi , where

εi
iid∼ N(0, ν2). Take a = 0.5, b = 0.5, ν = 1 and µ = 0.

2 Bilinear : Let Xi − µ = (a + bεi )(Xi−1 − µ) + εi , where εi
iid∼ N(0, ν2).

Take a = 0.9, b = 0.1, ν = 1 and µ = 0.

3 Fractional Gaussian Noise Process: Let Xi = Yi be a zero-mean
Gaussian processes with polynomial decaying ACVF, i.e.,
E(Y0Yk) = a(k + b)−c . Take a = 70, b = 7 and c = 3.
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