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Meaning of Recursive Estimation

Consider the estimation of sample mean X̄n = n−1 ∑n
i=1Xi where the data

Xi arrives sequentially. There are two ways to compute X̄n:
1 (Non-recursive) Calculate (X1 + X2 + . . . + Xn)/n;
2 (Recursive) Calculate {(n− 1)X̄n−1 + Xn}/n.
The second way relies on the previous estimate X̄n−1 to update X̄n and the
number of operations is the same regardless of n. Hence we call it recursive or
O(1)-time update. In addition, the second way only needs to store the values
of X̄n and n at each iteration, which involves a fixed amount of memory.
Hence we call it O(1)-space update. Note that not all estimators can be
recursively updated.

Introduction

Consider a stationary and ergodic process {Xi}i∈Z with mean µ := E(X1) and
autocovariance function (ACVF) γk := E

{
(X0−µ)(Xk−µ)

}
, k ∈ N. As Xi are

serially dependent, the variance of sample mean becomes the long-run variance
(LRV), which can be expressed as

σ2 =
∑
k∈Z

γk. (1)

Estimating the LRV is thus crucial in accessing the error of many inference or
learning procedures. In common applications like Markov chain Monte Carlo
(MCMC) and stochastic gradient descent (SGD) where the sample size is not
known a priori, sequential LRV estimates are often used to diagnose the con-
vergence. Given the extensive use of these algorithms, seeking a LRV estimator
that is both statistically and computationally efficient becomes important. Nev-
ertheless, existing work faces an efficiency dilemma:
• Classical estimators that utilize overlapping batch means [4] and Bartlett

kernel [1] are statistically efficient but need O(n)-time to update;
• Recursive estimators such as triangular (∆SR) [8] and parallelogrammatic

(PSR) selection rule [2] can be updated in O(1)-time but have higher
asymptotic mean squared error (AMSE).

To facilitate discussion, we assume that µ = 0 is known throughout the poster.
The general definitions are presented in [6].

The Source of Efficiency Dilemma

To investigate the efficiency dilemma, we define a general class of estimator that
includes both classical and recursive cases:

σ̂2
n(W ) = 1

n

n∑
i=1

n∑
j=1

Wn(i, j)XiXj, (2)

where Wn(i, j) is a window function (also known as kernel). Note that the
window can be further decomposed into two components:

Wn(i, j) = T

|i− j|
tn(i)

S
|i− j|
sn(i)

 , (3)

where T (·) : [0,∞)→ R is the tapering function that scales the autocovariance
estimates, S(·) : [0,∞) → {0, 1} is the subsampling function that determines
the truncation lag and tn(i), sn(i) are their corresponding smoothing parameters.
Under this construction, we notice that PSR, the existing most efficient recursive
estimator, cannot control the tapering as the height of triangles is undesirably
increasing. Bartlett kernel, on the other hand, cannot control the subsampling
as the width of triangles is fixed globally; see Figure 1.
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Figure 1:Comparison of the window under standard Bartlett kernel and PSR.

Estimation Principles

The source of efficiency dilemma motivates us to reconsider the roles of tapering
and subsampling in LRV estimation. Therefore, we develop five step-by-step es-
timation principles which can be summarized as LASER. Here we only discuss
the first three:
1 (Local Subsampling) An O(1)-time update algorithm should utilize local
subsample, i.e., sn(i) should depend on i only.

2 (Asynchronous Tapering) Under stationarity, (Xi, Xj) and (Xi′, Xj′) should
receive the same scaling if |i− j| = |i′ − j′|, i.e., tn(i) should depend on n.

3 (Separated Parameters) The tapering and subsampling parameters should
be separately chosen.

Their philosophy are as follows:
1 (Local Subsampling) Recursive estimates should be adapted to the present
stage, i.e., the future (e.g., the future sample size n) should not affect the
already computed estimates.

2 (Asynchronous Tapering) When the distances are the same, the data pairs
contain the same amount of information on covariance structure under
stationarity and so they should be treated equally.

3 (Separated Parameters) Statistical and computational efficiency are mainly
determined by tapering and subsampling respectively but we may have
different demands on them.

Proposed Estimators

Based on the principles of LASER, the general estimator is defined as

σ̂2
n,LASER(q,φ) = 1

n

n∑
i=1
X2
i + 2

n

n∑
i=1

s′i−1∑
k=1

1− k
q

tqn

XiXi−k, (4)

where the new parameters mean
• q ∈ Z+: the characteristic exponent. The higher it is, the faster (4) converges

subject to regularity conditions. This is possible by the sufficient condition
for O(1)-time update derived with the principle of Exterior Tapering.
• φ ∈ [1,∞): the memory parameter. When φ ≥ 2, updating (4) only

involves a constant amount of memory. This is possible by the sufficient
condition for O(1)-space update derived with the principle of Ramped
Subsampling. Note that ramped subsampling parameter is defined as

s′i :=
 s
′
i−1 + 1, si−1 ≤ s′i−1 + 1 < φsi−1;
si, s′i−1 + 1 ≥ φsi−1.

(5)

Surprisingly, the AMSE of (4) can be super-optimal (0.96Bn); see Table 1. In
addition, (4) can be updated at predetermined points n1, n2, . . . instead of every
single points. By allowing users to select a common mini-batch size m such that
nj+1−nj = m, we call this conceptmini-batch estimation as in the machine
learning literature. Through eliminating redundant operations and leveraging
on vectorization, mini-batch estimators are much faster than existing recursive
and non-recursive estimators; see Figure 3.

Summary

Table 1:Properties of different LRV estimators with q = 1

Estimator Smoothing Parameters Complexity Statistical Efficiency
σ̂2
n φ sn(i) tn(i) Time Space AMSE/σ4 Relative Bias2/Var

Bartlett kernel, ‘B’ / (3/2)1/3κ
2/3
1 n1/3 O(n) O(n) 2.289κ2/3

1 n−2/3 Bn 0.5
PSR, ‘P’ / 31/3κ

2/3
1 i1/3 O(1) O(n1/3) 2.564κ2/3

1 n−2/3 1.12Bn 0.5
TSR, ‘T’ / (4/5)1/3κ

2/3
1 i1/3 O(1) O(1) 2.751κ2/3

1 n−2/3 1.20Bn 0.5
LASER, ‘E’ 1 (30/19)1/3κ

2/3
1 i1/3 (13/12)sn(n) O(1) O(n1/3) 2.204κ2/3

1 n−2/3 0.96Bn 0.399
LASER, ‘R’ 2 (10/7)1/3κ

2/3
1 i1/3 (8/7)sn(n) O(1) O(1) 2.309κ2/3

1 n−2/3 1.01Bn 0.354

Key takeaways
1 The tapering and subsampling behaviors of a
non-parametric method can be different. LASER
provides guidance in selecting them for LRV
estimation and achieves super-optimality.

2 Traditional recursive estimators can be extended to
mini-batch estimators, which significantly
improves the execution speed in practice.

3 Recursive estimators can be more efficient than
non-recursive estimators.

Asymptotic Theory

We develop the asymptotic theory of (2) and (4) based on the dependence
measures of [7]. Under regularity conditions:
1 (Lα Consistency) Let α > 2. Suppose that X1 ∈ Lα, then∥∥∥σ̂2

n − σ2∥∥∥
α/2 = o(1).

2 (L2 Convergence Rate) Let α ≥ 4. Suppose that X1 ∈ Lα, sn(i) = Ψiψ and
tn(i) = Θnθ, then

MSE(σ̂2
n) ∼ O(n−2/(1+2q)),

provided that ψ = θ = 1/(1 + 2q) and uq = ∑
j∈Z |j|q|γj| <∞.

3 (AMSE-Optimal Parameters) Let vq = ∑
j∈Z |j|qγj <∞ and κq = |vq|/σ2.

If ψ = θ = 1/(1 + 2q), the AMSE-optimal Ψ is given by

Ψ? =



{
(φ+1)(2q+1)

2q(q+1) −
4(φq+2−1)(2q+1)

(φ−1)q(q+1)(q+2)(3q+2) + (φ2q+2−1)
2(φ−1)q(q+1)(2q+1)

}−1/(1+2q)
κ2/(1+2q)
q , φ > 1;{

2q+1
q(q+1) −

4(2q+1)
q(q+1)(3q+2) + 1

q(2q+1)

}−1/(1+2q)
κ2/(1+2q)
q , φ = 1.

while the AMSE-optimal Θ is given by

Θ? =



{
(q+2)(3q+2)(φ2q+2−1)

4(2q+1)2(φq+2−1) + Ψ−2q−1
? κ2

q(φ−1)(q+1)(q+2)(3q+2)
4(2q+1)(φq+2−1)

}1/q
Ψ?, φ > 1;{

(q+1)(3q+2)
2(2q+1)2 + Ψ−2q−1

? κ2
q(q+1)(3q+2)

4(2q+1)

}1/q
Ψ?, φ = 1.

If O(1)-space update is required, the AMSE-optimal φ is 2. Otherwise, the
AMSE-optimal φ is 1.

Note that mini-batch estimation is only updating (4) at n = nj so the
statistical efficiency is unaffected. A numerical summary is given in Table 1.

Monte Carlo Experiments
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Figure 2:Comparison of the relative empirical MSEs under Bartlett kernel (‘B’), PSR (‘P’), TSR
(‘T’), LASER(1,1) (‘E’) and LASER(1,2) (‘R’). The experiments are conducted based on 1000
replications. The finite sample performance matches with asymptotic theory; see Table 1.
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Figure 3:Comparison of the computation time under existing implementations of Bartlett kernel
(sandwich), overlapping batch means (mcmcse), PSR (rTACM) and mini-batch LASER (rlaser)
in R. The experiment is conducted based on 50 replications and 100,000 samples.

Applications and Conclusion

Interestingly, the use of LRV estimators differs between the statistics and engi-
neering communities. Here we try to include both views to conclude our poster.
For statistician, in particular those who work on Bayesian analysis, they usually
use LRV estimators to diagnose MCMC convergence; see, e.g., [4]. In the half-
width analysis, we can terminate a simulation at

n∗ = inf
{
n ∈ Z+ : z1−α/2n

−1/2σ̂n + p(n) ≤ ε
}
, (6)

where α ∈ (0, 1) is the significance level, z1−α/2 is the 100(1 − α/2)% lower
quantile of N(0, 1), p(n) is a penalty function for n that is too small and ε > 0
is the maximum tolerable error. Essentially, the half-width analysis is based
on the Central Limit Theorem (CLT) for sample mean X̄n and stops when the
100(1 − α)%-confidence interval is small enough. As mean functionals appear
frequently in stochastic approximation, this idea can be extended to other learn-
ing algorithms apart from MCMC naturally; see, e.g., [3].
On the other hand, the engineers, in particular those who work on deep learning,
develop a different direction. By viewing LRV as a measure of precision, we can
try to improve the learning procedure proactively by tuning the learning rate;
see, e.g., [5]. While these adaptive learning procedures are usually also based on
CLT, we can see that it represents a different philosophy in using LRV estimators.
Regardless of the views, sequential LRV estimates are used in their procedures to
diagnose learning algorithms. By discussing the estimation principles LASER,
the concept of mini-batch estimation and other issues, we hope to echo
the theme of Advancing Statistics for Data Intelligence and demonstrate the
utility of recursive LRV estimators to you.
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Software

rlaser: an R package for Recursive Long-run Variance Estimation. 2020+.
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