

Image Processing at ISCAS

PPHP: Project Hand Pose

An Exploration to Develop Neural Networks for

Personal Devices

Man Fung Leung, Ka Chung Wong, Chenfeng Han

Supervised by Dr. Libo Zhang

1 Introduction

Before the 2010s, computer vision researchers and engineers relied on hand-crafted

features and statistical methods to design vision systems (Krizhevsky, Sutskever & Hinton, 2017).

As a result, image recognition was a difficult task that required detailed understanding or

professional knowledge. With the emergence of the convolutional neural network (CNN) in 2012,

machine learning becomes the de facto approach to image recognition (Krizhevsky, Sutskever &

Hinton, 2017). Nevertheless, one common problem with the existing deep learning based

methods is that a considerable amount of computational resources, as well as data, are required

before the model can achieve satisfactory performance (Goodfellow, Bengio & Courville, 2016).

This limits the practicality of these methods in real life on personal devices.

On the other hand, there is a potential demand for deep learning on personal devices. Taking

web application as an example, it can enhance the concept of Software as a Service (SaaS). The

ability to use the neural network on the client-side can provide users with confidence in their

privacy (e.g. grammar checker for confidential documents). Individual developers with limited

computational resources in their servers are benefited in terms of trust and flexibility. Other

applications include Federated Learning (McMahan & Ramage, 2017) and mobile development.

With the incoming era of the Internet of Things, such demand is expected to be increasing.

Therefore, in this project, we aim to explore and share some practical methodologies in

developing neural networks for personal devices. We illustrate our results with a web game

based on hand pose classification. The remainder of this paper is organized as follows: Section 2

reviews some related work in the literature. Section 3 discusses some practical concerns arose

from exploratory data analysis, image pre-processing and application development. Section 4

details the methodology and network architecture. Section 5 reports our experimental results.

Section 6 analyzes the web game and model’s online performance briefly. Section 7 concludes.

2 Related work

2.1 Image classification

In 2012, AlexNet won the ImageNet competition championship with excellent results. For

the first time, AlexNet used ReLU, Dropout and LRN in a CNN, and accelerated the operation of

the GPU (Krizhevsky, Sutskever & Hinton, 2017), making AlexNet perform much better than

traditional machine learning technology. After that, a considerable number of deep learning

models have been developed. We will review three of them, namely VGG16, ResNet and

MobileNet.

VGG16 is a deep learning network model proposed by the Visual Geometry Group of Oxford

University. One of its improvement over AlexNet is the use of successive 3 by 3 convolution

kernels (Simonyan & Zisserman, 2014). The use of stacked small convolution kernels is superior

because multiple nonlinear layers can increase network depth to ensure more complex patterns

are learned with fewer parameters (Simonyan & Zisserman, 2014).

ResNet (Residual Neural Network) is proposed by four Chinese researchers at Microsoft

Research. The main feature of ResNet is to add the idea of Highway Network to the model,

allowing the original input information to be passed directly to the later layers (He et. al., 2015).

Such residual learning mechanism can tackle the problem of degradation/gradient explosion in a

very deep model (He et. al., 2015). Using ResNet, they successfully trained a 152-layer neural

network and won the championship in ILSVRC2015.

MobileNet is a deep learning model designed for mobile application by researchers from

Google. It transforms the traditional convolution structure into a two-layer convolutional

operation, which greatly reduces the computation time without affecting the accuracy a lot

(Howard et. al., 2017). Theoretically, it can reduce the time by 8 to 9 times for a CNN using 3 by

3 kernels (Howard et. al., 2017).

2.2 Object detection

The emergence of AlexNet, as well as deep learning, also revolutionize object detection.

Currently, object detection algorithms are mainly divided into two categories. The first one is

based on regional proposals, such as R-CNN, Fast R-CNN and Faster R-CNN. The second one is

based on end-to-end learning, such as YOLO and SSD.

The R-CNN algorithm mainly includes regional proposal, normalization processing, feature

extraction, classification and regression (Girshick et. al., 2016). Based on R-CNN, Fast-RCNN

optimizes the whole network by adaptive scale pooling, which avoids the redundant feature

extraction operation in R-CNN and improves the accuracy and speed of network recognition

(Girshick, 2015). For Faster R-CNN, it extracts the candidate frames by constructing the Region

Proposal Network (RPN) instead of the selective search method with large time overhead, which

further improves the speed (Ren et. al., 2015).

For the other stream, YOLO combines object detection and recognition, which greatly

improves the speed (Redmon et. al., 2015). Its background false detection rate is lower than R-

CNN and supports the detection of unnatural images (Redmon et. al., 2015). However, one

disadvantage is that the object positioning error can be large due to the rough division of the S×S

grid (Redmon et. al., 2015). The SSD improves the idea of the regional proposal and uses an RPN

network similar to that of Faster R-CNN (Liu et. al., 2016). The difference is that the SSD uses RPN

on multiple feature layers of CNN for classification and Bounding-Box regression (Liu et. al.,

2016). Therefore, the detection of small objects on the image becomes more accurate.

3 Practical concerns

3.1 Datasets

The first difficulty of using deep learning based method encountered by individual

developers is probably insufficient quality data. This is one of our practical concerns as well. As

we try to develop a web game with hand pose classification, we need to collect different hands’

images. Nonetheless, taking photos of our hands under different background might lead to a

network that only works with our hands, while taking photos of different hands under the same

background might lack generalization ability to the surrounding. In light of this, we blend two

datasets downloaded from Kaggle (alish_manandhar, 2019; Bruère-Terreault, 2019) as we find

that using a single type of data would lead to poor performance in reality.

Figure 1: different hands under the same background (Bruère-Terreault, 2019)

Figure 2: the same hand under different backgrounds (alish_manandhar, 2019)

In addition to multiple data source, we also try to label the region of hand with a bounding

box in these images and delete some which were wrongly labeled or of bad quality (like multiple

hands with different poses) in alish_manandhar (2019). This may be useful if we try to build

another head for hand detection in our model. It also adds value to future users of this combined

dataset.

Finally, we balance the composition of the two sources in the validation set to avoid

potential bias. Below is a summary of the final dataset after our labeling and amendment:

Category No. in training set (~70%) No. in validation set (~30%) Total size/MB

Paper 1,075 400 136

Rock 1,144 400 134

Scissors 1,155 400 131

Table 1: Summary statistics of the final dataset

3.2 Model

Due to the limited computing power of personal devices, our model has to strike a balance

between performance and size. There are several reasons:

Firstly, the model size has a huge impact on the loading time of application. Since privacy

protection is the edge of deep learning on personal devices, we would consider loading the model

on client-side first to verify its feasibility. This may also shed light on other areas like Federated

Learning (McMahan & Ramage, 2017) with millions of personal devices.

Secondly, the network’s depth has a positive relationship with processing time. In general,

a deeper neural network has more parameters in higher-dimensional space. Therefore, the

deeper a network is, the longer it takes for the model to make a prediction. This may hinder our

users’ experience, especially given the computational limitation of personal devices.

Last but not least, the network’s size may affect training efficiency as well. When there is

insufficient data, developers cannot train a large neural network under a reasonable number of

epochs as the optimizer cannot escape local optima in high-dimensional parameter space. This is

true even if we use a pre-trained network, which we will discuss further in Section 5.

In light of these, we compare the statistics of several popular image classification network,

assuming an input size of (224, 224, 3). Base on the size statistics, we have preliminarily chosen

MobileNet as the backbone of our hand pose classification network. We will discuss its

architecture further in the next section.

Model No. of parameters Depth/No. of layers Size/MB

MobileNet 3,228,864 88 39

ResNet50 23,587,712 52 283

VGG16 14,714,688 23 177

Table 2: Size statistics of MobileNet, ResNet50 and VGG16 as Keras application (keras-team, 2019)

3.3 Application

To deploy the trained model on the client-side, we need to perform model conversion and

preferably compression as well. Since the model framework is Keras and the application is web-

based, we need a tool to convert Keras model into JavaScript. There are two sets of these tools

available: Keras.js (transcranial, 2018) and TensorFlow.js (TensorFlow, 2019). However, Keras.js

is no longer active after 2018 (transcranial, 2018). As a result, we will use TensorFlow.js under

Keras v.2.0.9 for the application.

Another practical concern, which arises from the nature of web languages, is that the

logic/code of the game is visible to players. We can partially tackle this problem by compressing

our JavaScript files as well as encrypting the code. However, for educational purpose, we did not

do so to the source code on GitHub. Future developer should be aware of this problem when

they develop client-side application.

4 Methodology

To address the aforementioned modeling concerns, we try to reduce the complexity of

convolution, which is a major mathematical operation in image classification networks. This is

inspired by Howard et. al. (2017), who propose Depthwise Separable Convolution in their

MobileNet. Compare with the standard convolution, Depthwise Separable Convolution

factorizes a standard convolution into a depthwise convolution and a 1×1 pointwise convolution,

which uses 8 to 9 times less computation under a 3×3 kernel while maintaining a good accuracy

(Howard et. al., 2017).

On the other hand, we apply transfer learning to reduce training time and boost model

performance. According to Goodfellow, Bengio and Courville (2016), it is common for computer

vision researchers to use the features from a convolutional network trained on ImageNet and

finetune to complete different tasks. For instance, Girshick et al. (2015) use a pre-trained image

classification network to solve the problem of object detection.

As a result, we construct our network based on the following architecture (the complete

architecture of MobileNet can be found in appendix A1):

Layer/type Input size Output size No of parameters

MobileNet (backbone) 224× 224 × 3 7 × 7 × 1024 3228864

Global average pooling 7 × 7 × 1024 1 × 1 × 1024 0

Dropout 1024 1024 0

Softmax 1024 3 3075

Table 3: Architecture of our hand pose classification network

5 Experiment

The experiments are conducted on an NVIDIA Tesla V100 SXM2 32 GB. For a comprehensive

evaluation, we try four underlying networks: a vanilla 5-block (32-64-128-256-512) CNN without

pre-training, MobileNet (Howard et. al., 2017), ResNet50 (He et. al., 2015) and VGG16 (Simonyan

& Zisserman, 2014) pre-trained with ImageNet data. Training is implemented with stochastic

gradient descent using the ADAM scheme with 25 epochs. The learning rate and other hyper-

parameters follow the original paper (Kingma & Ba, 2014). For image preprocessing, we resize

the images into (224,224,3) and add random flipping to the training set such that the model will

be more resilient to rotated hands (Liu et. al., 2019).

Testing with our validation set, which contains 400×3 hand images (equally split between

the two sources), the following results are obtained:

Underlying network Accuracy Speed/fps Size/MB Environment

Vanilla 5-block CNN 66.67% 124.15 334

NVIDIA Tesla V100
SXM2 32 GB

MobileNet 98.56% 131.36 39

ResNet50 89.22% 123.06 283

VGG16 66.67% 111.61 177

Table 4: Performance statistics of our model with different backbones

Compare with the other networks, MobileNet achieves a great balance between

performance and size. Besides, it avoids most of the practical concerns regarding deep learning

on personal devices, such as local optima trap and lack of computational resources. As we

observe from the training process, MobileNet converges much quicker and better than other

networks.

On the other hand, we notice that although ResNet has a large model size and plenty of

parameters, it is still able to converge unlike VGG and vanilla CNN. This is probably due to its

Residual Learning mechanism, which attempts to tackle the degradation problem in deep neural

network (He et. al., 2015). Noticing this fact, individual developers may also add Residual Learning

in addition to Depthwise Separable Convolution in the future for more complex problems.

6 Online Performance

To illustrate our results, a web-based game is designed with the interface shown in Figure

3. The player can start a round by pressing the button in the middle, which will be followed by a

countdown gif showing the remaining time on the top. When the countdown is finished, the

camera will capture a photo (as shown on the left-hand side) and the result will appear in the

bottom. However, we identify some problematic issues during the implementation of the game.

These issues will be discussed in the following subsections.

Figure 3: The UI design for the game

6.1 Loading Time

Though we foresee the model’s loading time as a problem during the backbone selection

process in Section 3 and make improvement through considering model size and complexity, this

problem still exists depending on the user’s bandwidth. To enhance user’s experience, we design

a loading gif which briefly explains the game’s mechanism. After the model is downloaded for

the first time, it will be cached in the player’s PC and the loading time will be greatly reduced for

the later access.

On the other hand, there is an obvious delay in the waiting time for the first prediction. After

a code review, we hypothesize that such delay is due to the initialization process in the called

function predict() in tensorflow.js. To reduce this undesirable effect, individual developers may

try calling this function once before the game is started.

6.2 Integrity

Benefiting from the high computational power, the computer can compute the

countermeasure to defeat a player in a time which human can hardly sense. In a PvE (player

versus environment) situation, it is important to verify the existence of integrity, i.e. the

computer does not change its original choice after knowing the choice made by the player in its

flavor. To deal with this issue, we have applied two methods:

Firstly, we program the computer’s decision to be purely generated by a random function

from the JavaScript Math library. As we did not compress or encrypt the code for educational

purpose, the player can verify that the variable storing the computer’s decision is independent

of the player’s choice. In addition, the variable assignment is done at the beginning of each round

and no reassignment is performed.

Secondly, we hash the computer’s decision and show the hash value before the player

makes their move. Since the hash value must be the same for the same message, the player can

encode the received message (computer’s decision after a round) again and compare the two

hash values. If it aligns with the old hash value, then integrity is ensured. In this case, we import

an md5 javascript to assist the hashing computation. When a round start, the computer’s choice

is encoded and the hash value will be displayed. After the round finish, the player can encode the

computer’s result with the same hashing algorithm to verify the validity of the result.

7 Conclusion

We compare the performance of different network architectures and, impressed by the high

accuracy and low complexity of Depthwise Separable Convolution, we use MobileNet as the

backbone. Experimental results demonstrate that MobileNet has a significant performance of

98.56% accuracy, which is considerable compared with the other network such as VGG16 and

ResNet. For future development, we may add the residual learning mechanism and introduce a

hand detection head to the network. We believe the accuracy can be further enhanced since the

hand is located and the background is neglected during the prediction.

Reference

alish_manandhar. (2019). Rock Scissor Paper. Available:

https://www.kaggle.com/alishmanandhar/rock-scissor-paper

Bruère-Terreault, J. (2019). Rock-Paper-Scissors Images. Available:

https://www.kaggle.com/drgfreeman/rockpaperscissors

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2016). Region-Based Convolutional Networks

for Accurate Object Detection and Segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 38(1), 142-158.

Girshick, R.B. (2015). Fast R-CNN. 2015 IEEE International Conference on Computer Vision

(ICCV), 1440-1448.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Available:

https://www.deeplearningbook.org/

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., & Weyand, T., … Adam, H. (2017).

Mobilenets: efficient convolutional neural networks for mobile vision applications.

keras-team. (2019). Keras Documentation. Available: https://keras.io/applications/

Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization.

Krizhevsky, A., Sutskever, I., & Hinton, G. (2017). ImageNet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), 84-90.

Liu, D., Du, D., Zhang, L., Luo, T., Wu, Y., Huang, F., & Lyu, S. (2019). Scale Invariant Fully

Convolutional Network: Detecting Hands Efficiently. Presented at AAAI Conference on

Artificial Intelligence, Hawaii, 2019.

 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., & Berg, A.C. (2016). SSD: Single

Shot MultiBox Detector. ECCV.

McMahan, B., & Ramage, D. (2017). Federated Learning: Collaborative Machine Learning

without Centralized Training Data. Available:

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Redmon, J., Divvala, S.K., Girshick, R.B., & Farhadi, A. (2015). You Only Look Once: Unified, Real-

Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 779-788.

https://www.kaggle.com/alishmanandhar/rock-scissor-paper
https://www.kaggle.com/drgfreeman/rockpaperscissors
https://www.deeplearningbook.org/
https://keras.io/applications/
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Ren, S., He, K., Girshick, R.B., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 39, 1137-1149.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition.

TensorFlow. (2019). TensorFlow.js. Available: https://www.tensorflow.org/js

transcranial. (2018). Keras.js. Available: https://github.com/transcranial/keras-js

https://www.tensorflow.org/js
https://github.com/transcranial/keras-js

Appendix

A1 MobileNet architecture (Howard et. al., 2017)

