IMAGE PROCESSING AT ISCAS

An Exploration to Develop Neural Networks for Personal Devices 26/10/2019

PREFACE

We thank our supervisor Dr. Libo Zhang for his invaluable guidance and our seniors at ISCAS for their generous support

INTRODUCTION: EXISTING METHOD

Existing popular image recognition methods are deep learning based

Otherwise require detailed understanding of the subject

MOTIVATION: POTENTIAL DEMAND

Privacy, convenience, speed

Federated Learning

Benefit individual developers

AIM: OUR PROJECT

Time is short (5 weeks)

Restricted to personal devices

Explore and share some practical methodologies in developing "small" and "fast" neural networks

Task: hand pose detection

Illustrate with a web game

RELATED WORK: SOME REVIEWED MODELS

Image classification

AlexNet, VGG16, ResNet, MobileNet

Object detection

R-CNN, Fast R-CNN, Faster R-CNN, YOLO, SSD

PRACTICAL CONCERNS: DATASETS

Representativeness

Surroundings

Figure 1: different hands under the same background (Bruère-Terreault, 2019)

Figure 2: the same hand under different backgrounds (alish_manandhar, 2019)

PRACTICAL CONCERNS: MODEL SIZE

Loading time

Processing time

Training efficiency

Category	No. in training set (~70%)	No. in validation set (~30%)	Total size/MB
Paper	1,075	400	136
Rock	1,144	400	134
Scissors	1,155	400	131

Table 1: Summary statistics of the final dataset

Model	No. of parameters	Depth/No. of layers	Size/MB
MobileNet	3,228,864	88	39
ResNet50	23,587,712	52	283
VGG16	14,714,688	23	177

Table 2: Size statistics of MobileNet, ResNet50 and VGG16 as Keras application (keras-team, 2019)

METHODOLOGY: DEPTHWISE SEPARABLE CONVOLUTION

Factorize a standard convolution into a depthwise convolution and a 1×1 pointwise convolution

use 8 to 9 times less computation under a 3×3 kernel

Transfer learning

Common practice in computer vision

METHODOLOGY: NETWORK ARCHITECTURE

Layer/type	Input size	Output size	No of parameters
MobileNet (backbone)	224× 224 × 3	7 × 7 × 1024	3228864
Global average pooling	7 × 7 × 1024	1 × 1 × 1024	0
Dropout	1024	1024	0
Softmax	1024	3	3075

Table 3: Architecture of our hand pose classification network

MobileNet architecture (Howard et. al., 2017)

Type / Stride	Filter Shape	Input Size
Conv/s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
Conv dw / s1	$3 \times 3 \times 32$ dw	$112 \times 112 \times 32$
Conv/s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
Conv dw / s2	$3 \times 3 \times 64$ dw	$112 \times 112 \times 64$
Conv/s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \mathrm{dw}$	$56 \times 56 \times 128$
Conv/s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$
Conv dw / s2	$3 \times 3 \times 128 \text{dw}$	$56 \times 56 \times 128$
Conv/s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$
Conv dw/s1	$3 \times 3 \times 256 \mathrm{dw}$	$28 \times 28 \times 256$
Conv/s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$
Conv dw / s2	$3 \times 3 \times 256 \mathrm{dw}$	$28 \times 28 \times 256$
Conv/s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$
Conv dw / s1	$3 \times 3 \times 512 dw$	$14 \times 14 \times 512$
Conv/sl	$1\times1\times512\times512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 dw$	$14 \times 14 \times 512$
Conv/s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024$ dw	$7 \times 7 \times 1024$
Conv/s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7×7	$7 \times 7 \times 1024$
FC/s1	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$
		-

EXPERIMENT

Preprocess: resize and random flipping

Validation set: 400x3 images (equally split between sources)

	- P		224	02
Underlying network	Accuracy	Speed/fps	Size/MB	Environment
Vanilla 5-block CNN	66.67%	124.15	334	NVIDIA Tesla V100 SXM2 32 GB
MobileNet	98.56%	131.36	39	
ResNet50	89.22%	123.06	283	
VGG16	66.67%	111.61	177	

Table 4: Performance statistics of our model with different backbones

ONLINE PERFORMANCE

Try the game <u>here</u>

API loading time problem

Integrity problem